
SCOPIRA - A SYSTEM FOR THE ANALYSIS OF BIOMEDICAL DATA

AleksanderB. Demko, Nicolino J.Pizzi,RayL. Somorjai
Institute for Biodiagnostics,NationalResearchCouncil

435Ellice Avenue,Winnipeg MB, R3B 1Y6
pizzi@nrc.ca

ABSTRACT

With the proliferation of high-dimensional biomedi-
cal data,an acuteneedexistsfor a comprehensive, user-
friendly software suite that allows investigators, in the
health care disciplines,to classifytheir datathrough the
detection of discriminatingfeatures. Scopira is a soft-
ware initiative that attemptsto achieve thesegoals in
addition to providing intuitive visual computation, logic
constructionandparallel execution. In this paper wede-
scribethearchitectureofScopira,andvariousdesignand
implementation issuesthatsurfacedduringdevelopment.

Keywords: Biomedical DataAnalysis,SoftwareEngineer-
ing, Parallel Computation.

1. INTRODUCTION

As analgorithm builder, Scopiraallows theplacement of
multiple algorithmmodulesandtheirconnectionsto each
other to form complex systems.An intuitive visual lay-
out paradigm is employed to displayandmanipulatethe
network of modulesandtheir connections.Inter-module
connectionsmay be quite complex, allowing for typical
programming constructssuchasloopsanddecisiontrees.
All inter-moduledataaretightly typedin a hierarchical,
object-oriented, data type tree. Configuration of mod-
uleparametersis alsoperformedvisuallywith immediate
feedback.

After testing,thesystemof modulesmaybemapped
onto a clusterof computers to betterutilize processing
power while decreasingexecution time. Modules need
not be awareof this networking - Scopira transparently
providesthis service.Nevertheless,Scopira providesan
interfacefor developersto optionally control parallelism
at theintra-modulelevel.

As a developmentenvironment for experienceddata
analysts,Scopirafacilitatesthecreationof new modules,
datatypesand functions that integrateseamlesslywith

existing services.Developersmayquickly build graphi-
cal interfacesto theiralgorithmsusingScopira’ssupplied
userinterfacetool kit andsimplifiedprogramming inter-
face.

Scopira is written completely in C++, with major
focus on ANSI compliance, proper designand maxi-
mumefficiency. Targetedat Linux desktopsandclusters,
Scopirais usableonmany UNIX variantsandmayutilize
many specializedhighperformancecompilers.

1.1. Application

Scopiradefinesa general framework for modules and
moduleinteractionanddoesnot specifyan application
domain.

Severalmoduleswerebuilt to perform dataclassifica-
tion andframework testing.Theseinclude:A genetical-
gorithmmodule to implement near-optimal region selec-
tion for featurespacereduction[1]. A regularizedmulti-
layer perceptron, Profile Analysis,principle component
analysis,linear discriminant analysis,fuzzy c-means[2]
clustering,andhalf-spacemedian[3] modules.

A setof general moduleswerealsodevelopedto deal
with the bundled data types. Thesemodules provide
genericfacilities suchas dataloading and saving, ma-
trix splicing andmerging, output generation andstatis-
tical functions.

2. USER FACILITIES

For the user(non-developer), Scopirafocuseson giving
theusermaximum control over themodule systemwhile
still maintaininga straightforward and consistentinter-
face.

2.1. Maps and Modules

A Scopiramap contains zero or more modules. Each
moduleis definedasa self-containedalgorithm andcon-

Proceedingsof the2002IEEECanadianConference
on ElectricalandComputerEngineering
0-7802-xxxx-x/02/ $10 c

�
2002IEEE

-001-

tainsa collectionof zeroor moreslots.Slotsmayfurther
bedividedinto input slotsandoutput slots,depending on
whether they takedataor produceit, respectively.

An input andoutputslot maybejoinedto form a slot
connection. Eachslot maybe connectedto any number
of slotsof theoppositetype.

SlotsexchangeScopiradataobjects.Eachinput slot
hasa queueof zeroor morepending dataobjects.When
an output slot sendsa dataobject, that dataobjectgets
queuedto eachinput slot that is attachedto it. Certain
input slotsmaybedeemednecessaryfor module execu-
tion. Only whenall of theseinput slotshave at leastone
dataobject,will themodule fire(execute). After amodule
fires, onedataobjectis consumed from the dataqueues
within eachinputslot.

2.2. Visual Display

To assisttheuserin mapconstruction, a visual interface
may be used. Modules are representedas titled icons,
whereasconnectionsbetweenmodulesarerepresentedby
connectinglines (Fig. 1). The userinteractively places
andconnectsmodulesonthemap.Variouswindowsmay
be brought up to help debug andmonitor modules and
dataasexecution progresses.

Eachmodulesmayoptionally definea setof proper-
ties. Propertiesaretypically settingsor parametersthat
affect how the module executes. Properties are imple-
mentedasslots,andmaybeconnectedto othermodules
asregular slots. In additionto regular connectionshow-
ever, propertiesmay have their valuesset through a vi-
sualinterfacepresentedto theuser. This allows theuser
to experiment with various propertiesinteractively, with
immediatefeedback.

Fig. 1. Visualmapdisplay

2.3. Scripting

Themore adeptusermayusetheprovidedscriptinglan-
guageto automate the processof mapconstruction and
execution. Thescriptinglanguageprovidesfull accessto
the Scopira system,allowing the userto assemblemod-
ules,setpropertiesandexecute maps.Mapscreatedwith
thevisual interfacemayalsobeloadedinto thescripting
system.This allows theuserto debugmapsvisually, and
thenautomatetheir runsin batches,non-interactively.

For the application developer, Scopira may be em-
beddeddirectly within anapplication. TheScopiracore
is itself a sharedlibrary with a straightforward, object-
orientedinterfacethanmay be linked with any applica-
tion. The visual display and scriptingapplications use
Scopirain thismanner. Thisallowsunlimitedcustomiza-
tion possibilitieswith regardto visual front endsandin-
formation processingautomation.

3. DEVELOPMENT FRAMEWORK

Scopiraallowsdevelopersto extend theframework along
four major areas;compoundmodules, datatypes,func-
tionsandproponents. Developersthenpackage theseex-
tensionsin aScopirakit for distribution.

3.1. Modules

An algorithmkernel is thebasicimplementationof apar-
ticular algorithmor operation. A modulecontainsa ker-
nel, stateinformation and dataslots. With theseslots,
modulesexchangedatawith othermoduleswithin amap.

This abstractionlets the module developer focus on
writing thealgorithm-specifickernels for their modules.
Heusesseveral Scopiramethodsto extract inputdataand
postoutput data. Scopirahandlesdatatransport anden-
suresthatinput slotsmarkedasrequiredhavedatabefore
calling thecorealgorithm.

Scopiracomeswith a bundle of useful and generic
modules. This includes modules that load/save datain
variousformats,print datato log andinteractively obtain
usersupplieddata. Finally, someof thesemodules per-
form genericdatamanipulation(for example, arraysplic-
ing andmerging) andothersperform common statistical
andmathematical functions. All thesemodules operate
on thebundleddatatypesanduser-defineddescendants.

-002-

3.2. Data Types

Eachinput andoutputslot is associatedwith a datatype.
Thisdenoteswhattypeof datatheslotproduces(for out-
put slots)or accepts(for input slots). Scopirawill allow
two slotsto beconnectedonly if theirdatatypesarecom-
patible (seebelow).

Internally, Scopiramaintains a data type tree (actu-
ally an acyclic, directedgraph), with eachnode of this
tree representingonedatatype. Eachdatatype in this
tree(excludingthe top root node, void) hasoneor more
parents.

In this tree,eachnode is considereda descendantof
its parents,andassuch,is said to extend theseparents.
This extension allows the datatype to be treatedasif it
wereany of its parentdatatypes(or anyancestor typefor
thatmatter).

Scopiraconsiderstwo datatypesto becompatibleif,
andonly if, thetwo datatypesareidentical,or if oneis an
ancestor of theotherwithin thetypetree.Thisfundamen-
tal concept of inheritanceandpolymorphismis borrowed
from object-orientedmethodologyandallowsmodulesto
operateon datatypesthat weredevelopedafter their in-
ception. By simplydefiningwhatbasedatatypeamodule
needs, that module may thenoperateon all descendants
of thattypewithoutmodification.

Eachdatatypepresentedto theusermapsdirectly to
a C++ class. Module developersthat wish to introduce
new typesto the system,may simply register their type
with Scopiraby specifying wherein theScopiradatatype
treetheir typeshould beadded. Scopirawill theninsure
connection-time type checking, basedon its location in
thetypetree.

Scopiratakesadvantageof thegenericprogramming
facilities of the C++ languageby usingtemplateclasses
to makeupthebaseof mostof its coredatatypes.Devel-
opersmayeasilycreatesimilarstructuresof new typesby
simply instantiatingthesetemplateclasses.

3.3. Micro Functions

Micro functionsarestandardC++ functionsthatarereg-
istered and managed by Scopira. An algorithm that
does not require theinterfaceor state-keepingfeaturesof
Scopira modulesmay be implemented asa micro func-
tion. This is particularly beneficial to algorithms that
will becalled,perhapsveryfrequently, from within other
modules. Calling a micro function is direct, with less
overhead, thansending thedataout throughoutput slots.

Theprimary goalof micro functions is performance.

By bypassingScopira’s datatransport andeventschedul-
ing mechanisms,micro functions incur very little over-
head.In fact,usingamicrofunctionwithin amodule suf-
fersonly onepointerindirection of performancepenalty,
comparedto callinganamedfunctiondirectly.

3.4. Proponents

Proponents (“property aware components”) are visual,
userinterfacecomponentsthataredesignedto control the
propertiesof amodule. They allow theuserto inspect,vi-
sualizeandpossiblysetthepropertiesinteractively, from
within thegraphicaluserinterface.

Proponentsoperateon a module’s data,andnot the
moduleitself. This decoupling allows proponents to be
usedonavarietyof modules,andconversely, allowsmod-
ulesto selectfromapool of proponentsto build theircon-
figurationscreens.

Scopiraincludesa setof genericproponents thatop-
erateonthebundled datatypes(Fig. 2), aswell aspropo-
nentsthatvisualizedatain anoutput-only fashion.

Module writers are free to make their own propo-
nents,either by extending an existing proponentor by
building onefrom scratch.Proponentinterfacecomplex-
ity is limited only by thegraphical userinterfacetoolkit
providedby thesystem.This gives themodule developer
full power to make radically new andpossiblycomplex
interfaces.

Fig. 2. configurationscreenbuilt with proponents

3.5. User Front Ends

ThecompleteScopiraenginecoreiscompiled intoashared
corelibrary. Thislibraryexposesastraightforward,object-
orientedinterfaceto mapconstruction andmanipulation.

-003-

This allows C andC++ developersto embedScopirain
their applications. This ability naturallyextends to any
languagethat maycall C functions - suchlanguagesin-
clude Java, Perl andPython. Thevisualmapediting in-
terfaceandscriptingsystemarebothimplemented in this
manner.

4. SYSTEM ARCHITECTURE

The Scopira frame work is designed to be modular,
portable, adaptable anddistributed. This was achieved
throughvarioussoftwareengineering techniques.

4.1. Core Design

Scopira is divided into threelarge softwarecomponents:
theengine core,thefront ends,andthebackendcompu-
tationkits.

Theenginecoreis thecentral coordinatorof aScopira
system.It is responsiblefor loading, maintaining andex-
ecuting moduleswithin maps.Theenginemanagesinter-
moduledatatransport aswell asdatacleanup.

The engine has three, run-time selectableevent
scheduling schemes. Theseschedulers decidewhich,
where andwhenmoduleswill run,possiblyin parallel.

Theuni-threadscheduler runseventssequentially, us-
ing only oneoperating systemthread. The multi-thread
scheduler attemptsto maximizeamulti-CPUmachineby
paralleling module execution on a singlemachine. The
network-awarescheduler managesa collectionof sepa-
ratemachines,connectedvia a network, eachwith any
number of processors. This schedulermay partition a
mapover thesenetwork nodestransparently, without re-
quiring any specialprogrammingby the module devel-
oper.

The engine core manages kits. A kit may contain
any number of developer suppliedmodule kernels, mi-
cro functions,datatypesandgraphical proponents. Kits
are implementedas sharedcode libraries, dynamically
loaded at run-time andselectedby the user. They may
bedevelopedanddistributedindependentlyfrom theen-
gineandtherestof Scopira.

Finally, thefrontendsinteractwith theenginethrough
its exposed,object-orientedinterface.Theinteractive vi-
sualmapeditorandscriptingsystemsbothusethis inter-
faceto manipulateandexecute maps.Customfront ends
maybebuilt in a straightforwardmanner, with no need
to rebuild any partof Scopira.

4.2. Portable

Scopirafollows standardsoftwareengineeringmethods
to maximize codeportability.

Platformdependentcodelike thethreadandnetwork
communicationsystemsareencapsulatedwithin objects.
Any changesrequiredto thesesystemsfor new platforms
or compilersneedonly bemadeto theseobjects.

Theonly external routinesusedby theScopiraengine
coreandstandardkits arethoseprovidedby theStandard
C++ library andthesystemlevel C libraries. Becauseof
this, it is quitestraightforwardto port theenginecoreand
kits to otherplatforms.

Thevisualfront enddependson theGTK+ graphical
userinterface library. This library is portableto all UNIX
platforms - with a betaWin32 port. Thescript front end
usestheGUILE/Schemesystem,which is portable to all
UNIX platforms.Portability to Win32 is assured,at least
via theCygwin tools.

To maintainclean,portable codethroughout thevar-
ious developmentphasesof the project,Scopirais rou-
tinely compiledandtestedunder variouscompilers. Cur-
rently, this list includes GNU C++, PGI C++ andIntel
C++.

4.3. Generic Programming

Scopiraattemptsto introduceas little overheador indi-
rectionto themodulesaspossible,while still providing a
convenient, object-oriented, type-safeinterface. Unnec-
essaryslow downsmayhaveanotablecostwhendealing
with mapsthatrunfor longperiods of timeoveracluster
of machines.Performanceimprovements may increase
thethroughputof a clusterandthusdecreasetheneedto
purchasemorenodes.

Onetechnique Scopirausesto achieve performance
gainsis to follow theC++ useof generic templates.This
in-lining andspecializedinstantiations of constructsfor
exactly the typesrequired gives the developer the exact
objectshe needswithout the needfor indirection, com-
mon baseclasses,or forcing everyone to usethe same
simpledatatypes.For instance,with genericclasses,de-
velopers arenot forced to work with double typeswhen
they wantthesmallerfloat types.

4.4. Parallelism

Scopirasupports parallelexecutionat two levels.
At theinter-modulelevel,Scopiratransparentlysched-

ulesandexecutesmodulessimultaneously. Scopiradoes

-004-

this by selectinga combination of modules to execute
from thecurrent runqueuethatwould maximize thecur-
rentstateof freeprocessors.All this is donetransparently
to themodule developer.

At the intra-modulelevel, ScopiraprovidesanMPI-
likeinterfacethatallowsmodulesto requestandusemany
processorswithin thecontext of their execution. This al-
lowsmodulesto beparallelizedwithout having to bebro-
kenup into smallerunits. Unlike MPI, Scopiramay in-
herently serializemany of its datatypes,thusremoving
many of theerror prone low level datatransport callsthat
MPI requires.

Throughout bothlevels,Scopiraconstantlymaintains
andmonitors the amount of processingresources,con-
stantly attempting to maximize computational through-
put.

5. DEVELOPMENT ISSUES

5.1. Module Granularity

Whendecoupling or partitioning a largealgorithm into a
setof connectable,logical modules, onewill almostal-
waystradesomeperformance for thebenefitsof decou-
pling. This occurs becausethenew modulesaremadeto
be moregeneralthantheir functional equivalents in the
older, largeralgorithms. As thecommunicationbetween
moduleshaveto gothroughthemoregenericmechanism
of Scopira’s slotsanddatatypes,modulesmayno longer
takeadvantageof beingtightly coupledandpassingmes-
sageswith completefreedom.

Thebiggestchallengefacingamoduledeveloperwho
wantstoconvertalargealgorithmtoasetof Scopiramod-
ulesis thepartitioning scheme.Partitioninganalgorithm
into many modulesrequiresadditional effort by themod-
ule developer. More importantly, however, the ratio of
time that Scopira spends moving databetweenmodules
andthe time actuallyspentrunning within eachmodule
increases.This is hardlydesirable,but in exchange,users
of themodulesarenow ableto swapoutcertainmodules
without swappingout thewholealgorithm.

At the otherendof the partitioning spectrum, mod-
ule developersbreak their algorithms into a few mod-
ules.This maybedonerelatively quickly andallows the
module usersto reassemblethefull algorithmalmostin-
stantly. Theuserspayapricefor thisconveniencethough,
asnow they maynot replacepartsof thesystemwithout
having to duplicateotherparts. This occurs becausethe
partsthey want to replaceareoftenbundled in thesame
modulewith partsthey donotwantto replace.

Ultimately, it is up to themodule developerto decide
on the level of algorithm partitioning. The proper bal-
ancemust be met betweenflexibility andperformance.
In somecases,moduledevelopersmaypredict whatparts
of their algorithmsusersmaywant to replace.This may
aid in the decisionprocess,andmay often be usedasa
guidefor the level of partitioning with theotherpartsof
thealgorithm.

Alternatively, developersmay choose to implement
common, straightforwardalgorithmsnot asmodules,but
insteadasmicro functions.

5.2. Polymorphism and Generics

C++ offers both extensive polymorphic object-oriented
facilities as well as extensive genericabilities via tem-
plates.Oftenthought ascomplementingeachother, they
are,in fact,opposingparadigms.

Run-timepolymorphismis achieved through theuse
of virtual methods in pre-definedclasses.If a method or
objectwould like to operateonanunknown class,thenit
mustat leastspecifythebaseinterfaceof virtual methods
that theclassmustimplement.Whenit operateson this
class,all virtual methodcallswill gothrough theirvirtual
methodtableandbe bouncedto the real, final methods.
This level of indirection is the cost of having run-time
polymorphism.

Genericprogramming is aformof compile-timepoly-
morphism. Entireclassesandmethodsaredevelopedto
operateon unknown types- requiring thesetypesto fol-
low a certainform. This form dictateswhatmethods,op-
eratorsandothercharacteristicsthe unknown type must
supply. However, unlike run-time polymorphism, these
requirementsmay be fulfilled not only by virtual meth-
ods,but alsoby friend functions, operators andstandard
operators. This coupling of type andgenericalgorithm
is done completelyat compiletime, resolving in no run-
timeindirectionscosts.Thepriceof thisperformanceand
type-safetyis of course,run-time polymorphism.

Scopiraattemptsa balancebetweenthesetwo para-
digms. For performance,all datatypesand core algo-
rithmsaregenericandtemplate-based.However, themod-
ulespresentedto theusermusthave bewell defined,vir-
tual interfaces.Therefore,many modulesoperateon the
mostpopular datatypesandthegenericonesareexplic-
itly instantiatedon similarpopular datatypes.Thepopu-
lar datatypesserveasahigher levelcommonground.For
systemswhereit is notpossibleto useor convert to these
popular datatypes,developersmayexplicitly instantiate
thealgorithmsasneeded.

-005-

5.3. C++ Programming

The C++ programming languageis relatively large and
complex. Its flexibility andpower, usedimproperly, may
beagreat sourceof errorsanddeveloperconfusion.Mod-
ern C++ programs like Scopiratake full advantageof
many languagefacilities,many of which wereonly stan-
dardizedor implementedin compilers quiterecently.

Scopiraallows legacy algorithms- thatis, algorithms
developedin traditional C, but notspecificallyin Scopira
- to be useddirectly in Scopira. Eachlegacy algorithm
needsconvertercodethatconvertsScopiradatainput and
output to andfrom theformatrequired by thealgorithm.
The Scopirascheduling systemwill also take carenot
to executetwo instancesof a legacy modulein parallel.
Scopira doesthis becausethe legacy algorithm may be
usingglobal variables for its stateinformation, making
parallel execution impossible.

Developersalsohave theoptionof keepingtheirdata
model andstill take advantageof Scopira’s inter-module
parallelism. They do this by making sureall the state
informationfor their algorithm maybeencapsulatedin a
class,whichin turnmaybeinstantiatedandcontrolledby
Scopira.

Finally, developersmaytake thefull plungeandcon-
vert their algorithms to usethe Scopiradatamodel and
corealgorithms.

Most corealgorithmsanddatastructuresaregeneric
structureswithin various C++ namespacesandencour-
agetheuseof autopointersandreferencecounting. Name
spacesallow for morelogical codeorganization andre-
ducenamingconflicts.Autopointersandreferencecount-
ing helpto debug andmanage dynamicmemory. Rather
thanhaving directaccessto thedata,developersmustuse
various accessfunctions to readandmanipulate the en-
capsulated data. StandardC++ method in-lining tech-
niques reducethe cost of type-safeaccessmethods to
zero- that is, adding no overheadat all. During debug
builds, theseaccessmethods do range checking. Devel-
opers accustomedto C arrays will find theseclassesfast,
convenient andstraightforward. Various vector andma-
trix classesalsohave methods thatallow directaccessto
theC-arraydatum.

Internally, wefoundthatnon-C++programmersmade
the transitionto C++ gradually, but steadily. Thekey to
this seemsto bea goodsetof existing,similar codethey
mayreferto, combinedwith straightforwarddocumenta-
tion explaining therelevant partsof thedatamodel.

6. CONCLUSION

In practice,the Scopirahasturned out to be very use-
ful for our internal algorithms. Conceptsintroducedby
Scopira,suchasthedatatypetreeandproponent system
demonstratedtheir utility early in development. As ex-
pected,theseconceptsandideaswereslightly refinedas
moremodulesandmapswerecreatedwith thetool. Input
from usertestingalsocontributedto severalrefinements.
On the whole however, the original object-oriented-like
designof the systeminternals as presented to module
developershasproved itself to be a solid foundationon
which to build morealgorithms.

The interface,aspresentedto themoduleusers,also
workedverywell. Thiscameasnosurpriseastheconcept
wasborrowedfrom severalpasttoolsusedinternally[4].

Futureplansfor development includeimplementing
morealgorithms,optimizing thosethatcurrentlyexist and
tuning the parallel scheduling engine. Algorithms and
datatypesfrom otherdomains wouldalsobeworthwhile
to test.

7. ACKNOWLEDGMENTS

Wewouldliketo thankBrionDolenko, AlexandreNikulin,
MarkAlexiuk andMarinaMandelzweig(all fromtheIBD)
for their contributionsto development. NSERCis grate-
fully acknowledgedfor theirfinancialsupportof thiswork.

8. REFERENCES

[1] A. E.Nikulin, B. Dolenko,T. BezabehandR.L. So-
morjai “Near-optimal Region Selectionfor Feature
SpaceReduction: Novel PreprocessingMethodsof
ClassifyingMR Spectra” NMR in Biomedicine 11
1-8 (1998).

[2] BezdekJ., Ehrlich R., Full W. “FCM: the fuzzy
c-meansclusteringalgorithm” Comput GeoSci10
191-203(1984).

[3] A. Struyf, P. Rousseeuw“High-dimensionalcom-
putationof deepestlocation” Computational Statis-
tics andDataAnalysis34415-426(2000).

[4] A. B. Demko, N. J.Pizzi, R. L. Somorjai “A Clas-
sification Canvas for the Analysis of Biomedical
Data” IEEE CCECE,Toronto,Canada, May 13-16
015(2001).

-006-

