
Scopira: An Open Source C++ Framework for Biomedical
Data Analysis Applications – A Research Project Report

Aleksander B. Demko
Institute for Biodiagnostics

National Research Council Canada
435 Ellice Avenue

Winnipeg MB R3B 1Y6
Aleksander.Demko@nrc-cnrc.gc.ca

Rodrigo A. Vivanco
Institute for Biodiagnostics

National Research Council Canada
435 Ellice Avenue

Winnipeg MB R3B 1Y6
Rodrigo.Vivanco@nrc-cnrc.gc.ca

Nick J. Pizzi
Institute for Biodiagnostics

National Research Council Canada
435 Ellice Avenue

Winnipeg MB R3B 1Y6
Nicolino.Pizzi@nrc-cnrc.gc.ca

ABSTRACT
In MRI research labs, algorithms are typically implemented in
MATLAB or IDL. If performance is an issue they are ported to C
and integrated with interpreted systems, not fully utilizing object-
oriented software development. This paper presents Scopira, an
open source C++ framework suitable for MRI data analysis and
visualization.

Classifications: D.3.2 C++, D.2.13 Reusable libraries

General Terms: Design, Languages

1. INTRODUCTION
The driving force for this project was to develop a

comprehensive, object-oriented programming architecture using
C++ for the development of applications geared towards
exploratory data analysis of magnetic resonance images (MRI).
This approach strikes a balance between slow, interpreted
languages such as IDL and MATLAB and fast, compiled
languages such as C. As application frameworks, the lack of
object-oriented development and the difficulty in integrating
C/C++ within these systems does not make them ideal platforms
for complex software development.

The emphasis with Scopira [1] has been on high
performance, open source development and the ability to easily
integrate other C/C++ libraries used in the medical imaging field
by providing a common OOP API for applications. As some
analysis algorithms lend themselves to parallelization, and with
the advent of Beowulf clusters, Scopira has been augmented to
take advantage of MPI [2] for distributed and parallel computing.
A dedicated, Scopira-specific parallel execution is currently under
development. Unlike other parallel programming interfaces such
as MPI and PVM, Scopira’s facilities provide an object-centric
approach with support for common parallel programming patterns
and approaches.

2. N-DIMENSIONAL DATA ARRAYS
Scopira provides an n-dimensional template class narray,

and its helper templates nslice and nindex. The narray class is
applicable to any numerical data type of any dimension (vectors,

matrices, cubes, etc). The resulting class is then tuned for that
particular type, and has the same performance characteristics as a
native C-language array of the same type. Scopira also provides
bounds checking (via asserts()) when in debug builds, which are
removed on release builds resulting in performance that would be
no worse than the C implementation equivalent .

The nslice template class is a virtual n-dimensional array that
is simply a reference to an narray. The class only contains
dimension specification information and is easily copyable and
passable as function parameters. Element access translates
directly to element accesses in the host narray. An nslice must
always be of the same numerical type as its host narray, but can
have any dimensionality less than or equal to the host. This
flexibility is very powerful; one could have a one-dimensional
vector slice from a matrix, cube or five-dimensional array, for
example.

The narray class provides hooks for alternate memory
allocation systems. One such system is the DirectIO mapping
system. Using the memory mapping facilities of the operating
system (typically via the mmap function on POSIX systems), a
disk file may be mapped into memory. When this memory space
is accessed, the pages of the files are loaded into memory
transparently. Writes to the memory region will result in writes to
the file. Furthermore, as the narray class is 64-bit clean, on 64-bit
architectures very large files may be used as datasets and the
operating system will page portions of the file into memory as
needed.

3. TOOLS SUBSYSTEM
Scopira consists of modular subsystems that can be used as

needed by developers. The tools subsystem provides generic
facilities useful in many programming domains, not just
numerical and scientific computing. A reference counting scheme
provides the basis for memory management. Scopira implements
a template class that emulates standard pointer semantics while
providing implicit reference counting on any target object. Other
useful utilities such as threading/locking, random number
generation, XML file processing and dynamic library loading are
provided.

Scopira provides a flexible, polymorphic and layered
input/output system. Flow objects may be linked dynamically to
form I/O streams. Scopira includes end flow objects, which
terminate or initiate a data flow for standard files, network sockets
and memory buffers. Transform flow objects simply translate data
from one form to another, such as binary-to-hex, buffer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA ’05, October 16–20, 2004, San Diego, California, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

consolidating and ASCII encoding. Future transformers could
include CRC calculators, compressors and cryptographic ciphers.

Serialization flow objects provide an interface for objects to
encode their data into a persistent stream. Through this interface
large complex objects can quickly and easily encode themselves
to disk or over a network. Upon reconstruction, the serialization
system re-instantiates objects from type information stored in the
stream. Shared objects – objects that have multiple references –
are serialized just once and properly linked to multiple references.

4. GRAPHICAL USER INTERFACE
This subsystem provides a basic graphical API wrapped

around GTK+ [3] and consists of widget and window classes that
become the foundation for all GUI widgets in Scopira. More
specialized and complex widgets, particular useful to numerical
computing and visualization are also provided. This includes
widgets useful for the display of matrices, 2D images, bar plots
and line plots. Developers can use the basic GUI components
provided to create more complex viewers for a particular
application domain.

A complementary subsystem provides the base OpenGL-
enabled widget class that utilizes the GTKGLExt library [4]. The
GTKGLExt library enables GTK+ based applications to utilize
OpenGL for 2D and 3D visualization.

A model is defined as an object that contains data and is able
to be monitored by zero or more views. A view is an object that is
able to bind to and listen to a model. Typically, views are
graphically in nature, but in Scopira non-graphical views are also
possible. A project is a specialized model that may contain a
collection of models and organize them in a hierarchical fashion.
Full graphical Scopira applications are typically project-oriented,
allowing the user to easily work with many data models in a
collective manner. A basic project-based application framework is
provided for developers to quickly build GUI applications using
models and views.

Scopira also provides a Lab facility to rapidly prototype and
implement algorithms that need casual graphical output. Users
code their algorithm as per usual, and a background thread
handles the updating of the graphical subsystem and event loop.

5. TYPE REGISTRATION SUBSYSTEM
This subsystem provides a general singleton registration

object for registering serializable data types and through which
applications and external plug-ins register their data models and
views. At runtime, Scopira pairs the compatible models and views
for presentation to the user. A collection of utility classes for the
easy registration of typical objects types such as data models and
views are provided. This registration mechanism succeeds
regardless of how the code was loaded; be it as part of the
application, as a linked code library or as an external plug-in.

Third parties can easily extend a Scopira application that
utilizes models and views extensively. Third party developers
need only register new views on the existing data models in an
application, then load their plug-in along side the application to
immediately add new functionality to the application. The open
source C++ image processing and registration library ITK [5] has
been successfully integrated into Scopira applications at run time
using the registration subsystem.

6. MPI EXTENSION
This subsystem provides a set of narray aware template

functions and input/output classes that allow developers to easily
interface with the MPI programmer's API. Using C++ trait classes

for type information and the size data already stored in narray,
these functions drastically reduce the amount of parameters
needed from the programmer thereby reducing common mistakes
when using MPI.

7. AGENTS EXTENSION
A Scopira-based parallel execution framework is currently

being developed. This extension has several notable goals
particularly useful to Scopira applications. The API is completely
object-oriented. This includes using the flow system for
messaging, task movement and check-pointing (supporting both
primitive and basic data types a swell as serializable objects) as
well as the registration system for task instantiation.

An agent object is launched whenever a Scopira application
utilizes the agent API. This object manages the additional worker
threads and network connections (to other agents) while the
application runs. This is completely transparent to the
programmer.

The mechanics and implementation of the agents and their
load balancing system are built into the agents extension library,
and thereby, Scopira applications. Users do not need to install
additional software, nor do they need to explicitly configure or
setup a parallel environment. This is paramount in making cluster
and distributed computing accessible to the non-technical user, as
is makes it a transparent feature in their graphical applications.

Scopira will contain three different agent types. The local
agent is non-network aware, single machine (but multi-threaded)
agent that may be used when distributed computing is not desired
or unavailable. The cluster agent is used with dedicated, full
connected and persistent Beowulf-like clusters are available. Load
balancing and resource allocation decisions are done at the global
level. Finally, a decentralized agent may be used to build larger,
complex agent networks. This agent makes resource allocation
decisions based on local information only (allowing for network
scalability) and may be utilized over unstable network links to
possibly unreliable remote agents. This is the most dynamic agent
of the set, requiring many peer-to-peer like approaches to
resource allocation and deployment.

8. APPLICATIONS/CONCLUSIONS
Scopira has been used to implement two MRI data analysis

applications. EvIdent [6] uses data driven cluster analysis to
identify brain activation regions with functional MRI. The other
application, currently being developed, calculates cerebral blood
flow and regions of edema to identify areas of ischemia in brain
scans of experimental animal brain stroke models using MRI. The
MPI subsystem was used to implement a parallel feature sub-
selection pattern recognition algorithm on a Beowulf cluster.

9. ACKNOWLEDGEMET
The Natural Sciences and Engineering Council (NSERC) is

gratefully acknowledged for its support of this investigation.

10. REFERENCES
[1] Scopira Website; http://scopira.org/
[2] MPI Website: http://www.mpi-forum.org/
[3] GTK+ Website: http://www.gtk.org/
[4] GTKGLExt Website: http://gtkglext.sourceforge.net/
[5] ITK Website: http://www.itk.org/
[6] EvIdent Website: http://scopira.org/evident/

