
A Parallel Processing Library for

User-friendly Applications

by

Aleksander Borys Demko

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2011 by Aleksander Borys Demko

Abstract

Clusters of commodity, “off the shelf” workstations have given developers and

users access to scalable and affordable computing resources. However, unlike large,

symmetric multi-processing machines, these clusters have an up front cost in

complexity, both for the developer and the user. Existing software frameworks have

attempted to mitigate this complexity with varied success. In most frameworks, the user

is forgotten and left to deal with an unwieldy application.

This thesis presents the design, development and testing of a new C++ computer

programming library, Scopira Agents Library (SAL). SAL is a message passing

interface and implementation suitable for building parallel applications, with a focus on

developer ease of use and user application deployment specification. The target

developers and users of such a solution would be those who prefer an easy to develop

library, with simpler deployment and application integration options with acceptable

sacrifices to performance and scalability.

The novelty of this parallel programming library is that it is more user-friendly

than other existing libraries. This novelty has two major facets: (i) programmer-usability

and productivity and (ii) application integration. Together, they permit a wider range of

programmers to utilize parallel programming in a wider range of new and existing

applications. This goal, user-friendliness, is rare among current parallel programming

libraries.

The result of the novelty is that parallel programming can be embedded into more

ii

applications, especially desktop applications. The user base and use cases for parallel

applications can be increased, resulting in more efficient use of resources in a variety of

applications. With increased efficiency, work can be performed in less time and larger

problems can be tackled.

iii

Acknowledgments

I would like to thank my advisor, Dr. Nick Pizzi for his invaluable advice,

direction, patience and perseverance throughout this adventure.

Finally, I would like to thank my wife, Luba, for her motivation and unwavering

support during the final stages of this work.

iv

Table of Contents

1 Introduction..1

Motivation 1

Target User 3

Problem Definition 4

Research Questions 6

Thesis Statement 8

Thesis Objectives 9

Thesis Organization 11

2 Background: Parallel Programming...13

Introduction 13

Design and Organization 15

Standard Libraries 24

Message Passing Libraries 32

Task Based Libraries 39

Language Extensions 43

Other Solutions 48

3 Background: The C++ Language...53

Introduction 53

History 55

v

Object-oriented programming 57

Class Destructors and RAII 59

Generic Programming 61

Memory management 63

Parallelism In C++ 65

The Standard C++ Library 67

4 Background: The Scopira Library..70

Scopira Tools 72

Numerical Functions 75

Graphical User Interface Library 84

Applications 87

5 Design...92

Overview and Goals 92

Messaging API 96

Scheduling Engines 109

Sample Services 120

Deployment 122

6 Experiments..124

Introduction 124

Assessing Performance 129

Assessing Usability 131

vi

Assessing Application Integration 134

7 Results and Discussion...136

Introduction 136

Results: Performance 136

Results: Usability 147

Results: Application Integration 154

Other Applications 162

8 Conclusions..167

Answers to Research Questions 169

Contributions 170

Limitations and shortcomings 171

Future Work 171

 Appendix A: Algorithm Pseudo-Code..177

 Appendix B: Electronic Files..180

 Appendix C: Experiment Protocol..181

 Bibliography...185

vii

List of Figures

Figure 1: A sample of program organizational models. Arrows indicate data flow........22

Figure 2: Scopira input/output stack..74

Figure 3: An nslice reference into an narray data set..83

Figure 4: Functional MRI activation map viewer in EvIdent®.......................................88

Figure 5: RDP Separation Display..90

Figure 6: The SAL API Stack..96

Figure 7: A typical call sequence (proceeds from top to bottom)....................................97

Figure 8: Example of nested task group spawning and communication.......................105

Figure 9: Embedded local-engine in a user application process....................................110

Figure 10: The SAL Network Stack..115

Figure 11: A sample of possible network deployment topologies.................................118

Figure 12: Boss-worker library efficiency on an SMP computer..................................138

Figure 13: Boss-worker library efficiency on a network cluster...................................139

Figure 14: Peer-to-peer library efficiency on an SMP computer (N=1)........................140

Figure 15: Peer-to-peer library efficiency on an SMP computer (N=10)......................141

Figure 16: Peer-to-peer library efficiency on an SMP computer (N=100)....................142

Figure 17: Peer-to-peer library efficiency on a network cluster (N=1).........................143

Figure 18: Peer-to-peer library efficiency on a network cluster (N=10).......................144

Figure 19: Peer-to-peer library efficiency on a network cluster (N=100).....................145

viii

Figure 20: Application integration demonstration for individual runs..........................157

Figure 21: Application integration demonstration for group runs.................................158

Figure 22: Application integration demonstration for cluster runs...............................159

Figure 23: Feature frequency histogram used by SFS...163

ix

List of Tables

Table 1: Communication code analysis of the boss-worker algorithms........................149

Table 2: Communication code analysis of the peer-to-peer algorithms........................152

x

List of Abbreviations and Acronyms

API Application Programming Interface, a contract and specification by one

service application (usually a code library) to another application (usually

the client application).

C++ A multi-paradigm programming language invented by Bjarne Stroustrup,

who started its development in 1979. It is a superset (although not strict) of

the C programming language.

CORBA Common Object Requesting Broker Architecture (CORBA) is a software

standard that enables software components distributed on multiple hosts and

written in multiple computer languages to cooperate and work together.

COTS Common off-the-shelf hardware, refers to hardware that can easily be

purchased from common, mass-market vendors (as opposed to specialized

vendors) at usually cost effective prices (due to mass-market competition).

COW Cluster of workstations, a collection of workstations connected by a

network.

CPU Central processing unit, the general processing core in a workstation.

FIFO First in, first out, a standard queue-like data structure in Computer Science.

Alternatively, in UNIX, a FIFO refers to a type of interprocess

communication available to processes within one host.

GPU Graphics processing unit, processors tuned for 2D and 3D graphics

xi

rasterization.

GUI Graphical User Interface.

GUID Globally unique identifier. A 128-bit integer value that can be randomly or

systematically generated at different hosts. Due to their large range, they are

assumed (but, of course, cannot be guaranteed) to be unique within the

universe.

IDL Interface definition language, used to define the interface of programming

objects and functions in a language-neutral fashion.

IOR Interoperable Object Reference, a token or opaque reference to an object

instance in a distributed object system such as CORBA.

IP Internet protocol, the core packet protocol for the Internet.

ITK The Insight Segmentation and Registration Toolkit, a software toolkit by

Kitware, Inc.

LOC Lines of code.

MPI Message Passing Interface, an API specification for process

intercommunication.

NOW Network of workstations, similar to COW.

OpenGL Open graphics library, an API specification for 2D and 3D graphics.

PID Process identifier, a operating system specific token or opaque reference to a

running process, usually a simple integer.

PVM Parallel Virtual Machine, a library and software system for combing a NOW

xii

into a single, virtual machine for computation purposes.

RAII Resource acquisition is initialization, a design pattern used in C++ where

objects (and their deterministic lifetimes) are used to safely control access

and handles to another resources.

RTTI Run-time type information, a C++ system that keeps information about an

object's data type at run-time.

SAL Scopira Agents Library, the extension to Scopira that provides an

embeddable, distributed processing system and the main body of work of

this thesis.

SFS Stochastic feature selection, a method of feature selection used for pattern

classification developed by Nick Pizzi.

SSI A single-system image is a cluster of computers appearing (to users and

applications) to be one single system.

TCP Transmission Control protocol, a stream protocol built on IP and one of the

core protocols of the Internet.

Threads A lightweight process. A feature of modern operating systems that permits

multiple instructions within one process to be executed concurrently while

sharing the same memory space.

UDP User Datagram Protocol, a datagram (packet) based protocol built on IP and

one of the core protocols of the Internet.

UNIX A computer operating system developed by AT&T in 1969. Today, it is a

xiii

specification and trademark that can be applied to a wide variety of

operating systems that share certain common functions.

URI Uniform resource identifier, an imprecise synonym for URL.

URL Uniform resource locator, an address of a resource (usually document) on a

network with protocol information. In popular language, these usually refer

to web addresses.

UUID Universally unique identifier. A synonym for GUID.

VTK The Visualization Toolkit, a software toolkit by Kitware, Inc.

xiv

Chapter 1: Introduction

1 Introduction

1.1 Motivation

Cluster and parallel computing continues to be the domain of experienced

algorithm developers and power users. Developers must be skilled in many areas to

correctly and efficiently write parallel programs. To write efficient code, familiarity

with a low level language such as C is crucial, giving the developer full control over

memory use and processor utilization. The developer must be familiar with Linux (or

some UNIX variant) as it is the operating system of choice for computation clusters,

even though many developers write their applications on their desktop computers,

which are often running Microsoft Windows. The developer must be familiar with a

message passing library, its programming interface, deployment methods and debugging

1

Chapter 1: Introduction

systems. Finally, programmers must be familiar with how to decompose and design

their algorithm in a parallel fashion.

For many developers, these upfront learning and development costs outweigh the

benefits. Either the algorithms have moderate computational processing demands,

running within long (but acceptable) time frames on single processors, or the

developer's program is simply tied to an interactive desktop application paradigm.

Users often prefer to use desktop applications over harder to use, specialized

parallel applications. Ease of use, familiarity and availability of their workstations and

laptops make them preferable, even if their performance is less than optimal.

Typically parallel applications provide a contrasting experience to the user. The

parallel application typically runs on a local Linux cluster. This often requires being on

site (for example, due to network firewall restrictions or bandwidth requirements),

eliminating mobile and off-line access. The user must remember and use an additional

user name and password to access the system. The user must then login to the

potentially unfamiliar system and use its interface. The user might have to remember

the commands for some obscure non-graphical application or re-familiarize themselves

with an alien graphical desktop. The files accessible by the compute cluster may or may

not map to files that the user's desktop can access, which may involve further manual

file copy operations. This experience is in stark contrast to that of local desktop

applications.

Clearly, there is room for improvement. How can parallel application

2

Chapter 1: Introduction

development be made easier for the application developer and who can then utilize

parallel processing in user-friendly applications? How can developers become more

productive parallel algorithm developers so that users will accept higher-performing

applications without losing the user-friendly graphical interfaces to which they are

accustomed? The contribution of this dissertation will be the introduction and

implementation of one possible solution.

1.2 Target User

There are many parallel programming solutions and message passing libraries in

existence today (see Chapter 2 for a background overview). However, none of the

existing message passing libraries focuses on ease of use. The focus is usually on

performance and scalability, with little concern paid to application deployment and

maintenance.

The proposed solution described here will attempt to address this shortcoming, by

presenting a library designed to be intuitive and easy to use for both developer and user.

This library will have acceptable performance trade-offs especially for its intended

developer audience.

For the developer, the library API itself will be designed to make development

fast, safe and robust. This is done through a concise and powerful API that utilizes C++

language features, to minimize the amount of development needed and to maximize the

amount of compile-time verification. For the user, the self contained thread-based

3

Chapter 1: Introduction

(rather than process-based) library implementation will be easy to embed into

applications, with no setup requirements, permitting the deployment of easy to use

parallel processing applications.

This type of library targets the following developers:

● Developers with moderate parallel processing requirements who value

development time could use this library to quickly develop parallel applications.

The developed applications, could fall back (without deliberate user control) to

utilize only the resources of the user's workstation when multi-node processing

is not desired, required or possible.

● Developers and users with existing applications could use this library to add

parallel processing, permitting the reuse of existing application code and

interfaces while extending the usefulness and scalability of their applications.

● Developers who want to target their parallel algorithms at less technical users

may use this library to build applications that are easier to use and deploy. In

fact, the built applications would be (from the user's perspective) no different

that a non-parallel processing capable application.

● Developers in any of these situations would greatly benefit from using the

proposed programming library.

1.3 Problem Definition

This problem has a few facets. The first issue is how to make programming

4

Chapter 1: Introduction

parallel algorithms and applications, via a message passing library, easier and less error

prone for the developer (usability). The solution must be embeddable and multi-

platform, so as to transparently cope with existing desktop applications, on whatever

platform they may be. Finally, the solution must be reasonably efficient (compared to

other base line message passing libraries), so as to reap the benefits of parallel

programming. These three key issues can be further expanded:

A library is easier to use (when compared to another library) when it requires less

time and research to use. The library interface could minimize the amount of

information required from the developer (especially redundant information), reducing

the chance for programmer errors. Less code takes less time to write. The library could

provide more compile and runtime checking, giving the developer error feedback before

the bugs manifest themselves as difficult-to-debug output errors or mysterious program

crashes. This reduces debugging and ultimately, development time significantly.

The library should be embeddable completely into existing applications. That is, it

should be usable in the developer's existing applications, rather than forcing the

developer to write new applications, dedicated to the task of parallel computing. The

applications could be available on many platforms, so the library must be multi-

platform. To further couple with the existing applications, the library should minimize

(or eliminate) the need for management programs and setup procedures. Infrastructure

programs such as these detract from the user's needs to simply run the core algorithms,

and are often poorly understood and annoying. Any setup programs that are absolutely

5

Chapter 1: Introduction

required should be easy to use, perhaps part of the application, and preferably graphical

and menu driven.

Finally, the library must be relatively efficient. It should maintain respectable

scalability for many problem types and sizes. If the library is too inefficient, and

introduces too much runtime overhead, the user may ignore the offered parallel

solution, or perhaps demand a better one written using another library. This library will

of course make trade offs, and certain problem types and large data sizes (and large

processor sets) may require other parallel programming libraries with dedicated and

perhaps specialized computation and communication hardware.

1.4 Research Questions

The research work in this thesis aims to design and implement a new

programming library that will attempt to solve our stated problem: How can parallel

application development be simplified, permitting the construction of more user-

friendly parallel processing applications?

We will assess the effectiveness of the proposed approach using three evaluation

criteria: (i) programmer usability, (ii) computational performance and (iii) application

integration.

First, how can the solution be made easier and less error prone? How do we

assess (programmer) usability? Usability often is a subjective metric, and can be

assessed through surveys, focus groups and other traditional forms of usability testing.

6

Chapter 1: Introduction

Focus group testing can be error prone, expensive and time consuming, so for this thesis

a more objective metric will be designed. This metric will attempt to look at the

programming interface of the newly developed library and attempt to assess its

usability, introducing further questions: How do we assess the usability of a particular

programming interface? How do we compare the usability, error reduction and general

programmer aid of a pair of programming interfaces?

Second, the focus of this project is not communication performance, but rather

delivering an easy to use parallel programming library to allow parallel computing to be

deployed in a wider array of applications. Nevertheless, efficient performance must still

be achieved, at least for many common work loads, so as to not negate the benefits of

parallelization and the time invested into these solutions. To maintain acceptable levels

of performance, we must be able to objectively assess this efficiency. What

performance metrics do we use? What other libraries, algorithm types and work loads

do we compare and test against? What levels of performance are considered

acceptable?

Finally, we must question the solution's embeddability or integration, that is, its

ability to work with existing application code and application deployments. What

features are required to make the library most embeddable? What platforms must be

supported? How do we minimize external and cumbersome infrastructure software?

What techniques can be used to infer network and other configuration options?

Answering these questions will help the developer integrate the library seamlessly with

7

Chapter 1: Introduction

their existing code, letting users leverage parallel computing with their existing, familiar

applications. To supplement the previous two evaluation criteria, we will provide

anecdotal evidence demonstrating the effective integration capabilities of the proposed

approach.

The answers to these questions will then collectively direct us to an answer to the

original, primary question: How can parallel application development be made easier

for the application developer, who can then utilize parallel processing in user-friendly

applications?

1.5 Thesis Statement

The resulting work of this thesis will be the creation and assessment of a new,

parallel programming library. This library, although not as high-performance as other

well established libraries, will be decidedly more user-friendly, allowing the embedding

of the library into existing applications, making for a more seamless user experience.

By utilizing various C++ programming language features, the library's interface

will be easier to use (when compared to typical C or C++ parallel programming

libraries) and by inferring redundant information automatically thereby being less prone

to programming errors. The library's interface will be designed with object-orientation

in mind, allowing it to be embedded naturally into larger graphical applications.

Second, to show that the library performs within acceptable performance

characteristics for a variety of common work loads, various objective tests and

8

Chapter 1: Introduction

benchmarks will be performed. This will be done to show that the various novel features

introduced by the library do not have an overly detrimental effect on performance, when

compared to more established, performance-focused competitors.

It will be shown that the newly developed library is more seamless to embed into

existing application than existing libraries via: various network auto-detection

techniques; elimination of infrastructure programs; and generally less configuration and

maintenance requirements on the user.

1.6 Thesis Objectives

1.6.1 Grand Objective

The grand objective of this thesis is to create a new software programming library

for parallel application development, that is easier to use (program with), embed into

existing applications and deploy to users in a seamless fashion when compared to major,

existing parallel programming libraries. The newly created library must also be efficient

for some work loads, allowing the developer to fully realize the benefits of parallel

processing.

1.6.2 Method Objectives

The experimental methods will attempt to objectively assess the thesis answers to

the various research questions. By showing measurable results, the work can, by

answering these questions, show that the grand objectives have been achieved.

9

Chapter 1: Introduction

For programmer usability, deterministic code analysis techniques will be used to

show how algorithms implemented for competing systems can vary in complexity and

execution. Computational performance will be measured along many setups and

configurations, hopefully painting a clear picture of the various performance

characteristics of the competing packages. Finally, application integration will be

demonstrated in one real-world application, with accompanying analysis and

discussion.

1.6.3 Novelty and Contributions

The main contribution of this work is the design, development and

implementation of a new, simpler parallel programming library that provides adequate

performance (efficiency) for a useful range of parallel programming problems.

The novelty of this parallel programming library is that it will be more user-

friendly than other existing libraries. This novelty has two major facets: (i) programmer-

usability and productivity and (ii) application integration. Together they permit a wider

range of programmers to utilize parallel programming in a wider range of new and

existing applications. This goal, user-friendliness, is unique among current parallel

programming libraries.

The result of the novelty is that parallel programming can be embedded into more

applications, especially desktop applications. The user base and use cases for parallel

applications can be increased, resulting in more efficient use of resources in a variety of

10

Chapter 1: Introduction

applications. With increased efficiency, work can be performed in less time and larger

problems can be tackled.

1.7 Thesis Organization

The thesis is organized as follows.

Chapter 1 contained an overview and introduction to the thesis topics, including

its goals and expected contributions.

Chapter 2 contains a background overview of parallel programming, a short

history, its goals and various software and hardware trends. This chapter also outlines

the current state of the art and various issues with certain key technologies.

Chapter 3 gives a background overview and analysis of the C++ programming

language. This chapter outlines some of the features of C++ that justify its choice for

the work of this thesis.

Chapter 4 gives a background overview of the Scopira programming library, a

library that this thesis work utilizes for various (non-parallel programming) utility

functions. This thesis work is often combined with the Scopira programming library to

build a wide range of applications.

Chapter 5 outlines the design goals and considerations of the thesis work. This

covers both the design of the application programming interfaces as well as an overview

of the networking/threading back-end implementations.

Chapter 6 outlines the experiments that were conducted. These experiments

11

Chapter 1: Introduction

provide objective analysis of the thesis work, assigning various metrics to the work

along its various thesis goals.

Chapter 7 presents the results of the experiments. An analysis is provided to

summarize the results, with some discussion.

Chapter 8 summarizes the complete thesis work, its contributions and discusses

some directions for future work.

Finally, appendices and a bibliography are also included.

12

Chapter 2: Background: Parallel Programming

2 Background: Parallel Programming

2.1 Introduction

Individual computer processors have limits to their performance, and only through

parallel programming can scientific and high performance developers scale their work

loads. These limits are both practical (there is an absolute limit to processor speeds) and

financial (the cost-performance ratio tends to grow exponentially with processor speed),

forcing users to grow the number of processors (rather than just their speed), if they

want to achieve practical scalability.

Parallel programs, through this scalability, execute faster than those constrained to

single processors. This has many user benefits. Users can get their results faster, which

results in less wait time. In time-constrained environments, new algorithm options

13

Chapter 2: Background: Parallel Programming

become available. Users can process more data, giving more accurate results. Finally,

globally deployed parallel applications (like the SETI@home [5][60] or Folding@home

[64] projects) can make the seemingly impossible problems possible.

At first, parallel processing was the domain of expensive super computers, with

many processors and expensive interconnects and infrastructure. However, over time,

economies of scale have helped common consumer processors to, when connected

together appropriately, reach impressive throughputs usable for a growing number of

workloads, for a fraction of the price of specialized hardware. Users coupled common

off the shelf (COTS) hardware with free UNIX-like operating systems (usually Linux)

to form Beowulf [90][103] clusters. Less dedicated deployments are sometimes called a

cluster or network of workstations (COW or NOW, respectively). These clusters

brought parallel computing to many new groups of people, spurring new interest in

parallel computing research and applications.

 Over time, as the economics of scale continued to push consumer processors to

impressive new speeds, conventional super computer manufacturers such as Cray [25]

and SGI [98] watched more and more of their business go to Beowulf-specializing or

regular computer vendors. COTS hardware and free software simply provided a much

better value (in terms of processing power per cost) for many problems and domains.

The next large wave of parallel computing moved to the desktop market itself.

Moore's law (which made predications concerning the ever increasing capabilities of

processors [70][71]) may have reached its limit, prompting large, mass market

14

Chapter 2: Background: Parallel Programming

processor vendors such as Intel [53] and AMD [1] to sell processors with multiple cores

(processing units) in each processor, effectively bringing parallel computing to the

desktop. Now, common compute intensive consumer applications require parallel

processing (at the very least, non-distributed parallel processing usually via operating

system threads) should they want to take advantage of all the processing power.

Programmers have come up with a variety of tools to help tackle the challenge of

developing parallel programs. These solutions can include parallel-specific language

extensions, or operating system enhancements, or new code libraries. This chapter will

outline some of the more prevalent packages.

2.2 Design and Organization

Parallel programming and distributed programming are two basic approaches for

achieving concurrency in software. Parallel programming assigns work to two or more

processors within a single or virtual computer. A dedicated cluster of compute nodes is

considered a virtual computer according to this definition. Distributed programming

assigns work to two or more processors, which usually reside on different computers.

These computers may differ by location, hardware architecture and operating system

configuration, resulting in a more heterogeneous configuration.

The parallel programming approach is concerned with dedicating processors (and

their network interconnections) to solve mostly compute-intensive problems, and as

such is more beneficial to the demanding scientific programmer. The distributed

15

Chapter 2: Background: Parallel Programming

programming approach is more ad-hoc, and, although it could be used for some high

performance computing, it is better suited for solving many more general tasks. These

tasks include the building of distributed applications that must utilize the resources of

other machines to perform a task. These resources may include specialized hardware

(such as printers and scanners), databases, file repositories and dedicated terminals.

Flynn [31][36] introduced a classification scheme for parallel programs and

computers. His key classes of parallel machines were SIMD (Single Instruction,

Multiple Data) and MIMD (Multiple Instruction, Multiple Data). SIMD applies the

same algorithm to different pieces of data (sometimes known as “divide by data”)

across processors, while MIMD assigns different tasks or algorithms (and different data)

to each processor (sometimes known as “divide by task”).

SIMD lends itself more to scientific, and thus parallel programming, while MIMD

and its division of tasks (especially at less granular scales) is more analogous to

distributed programming. The dividing line between both schemes is not distinct. The

schemes often overlap, resulting in hybrid systems. For example, an application could

use distributed concepts for setup and overall application design while utilizing parallel

programming for the high performance work.

2.2.1 Design Methodology

Parallel programs, with their many benefits, do come with a cost. These costs

include additional challenges and considerations during program design, an

16

Chapter 2: Background: Parallel Programming

undoubtedly longer debugging process and finally a more involved deployment process.

The design process of parallel programs includes issues such as: decomposition,

communication and synchronization.

Decomposition is the process of dividing the problem and its solution into parts.

Often in parallel programs, the most scalable technique is to decompose the problem by

data. Different parts of the data are sent to different processes that then all proceed to

apply the same algorithm in parallel. The specifics on how to decompose the data could

also have many options, each with different performance results. For example, the

division of a numeric matrix could be done by rows, columns or both. More unbalanced

structures require other considerations. The problem may also be decomposed by

logical/functional steps, for example: input, searching, calculating, sorting, output, etc.

Finally, for distributed applications, the problem must be decomposed by resource, for

example: printer, databases and file repositories.

Communication issues arise in deciding how these decomposed solution parts will

interact. Do the parts share memory? Which pieces of the partial solution do they

exchange, and in what order? Who (which processor) manages the whole process? Are

communications between senders and receivers synchronized? Are there collective

broadcast operations? These issues have to be considered when designing a parallel

program.

Synchronization issues involve the coordination, scheduling and operating order

of the various processors. Do all the parts start at the same time, or must they be primed

17

Chapter 2: Background: Parallel Programming

individually? What happens when there is resource contention? What happens if a

processor finishes its part before all the others (very typical in heterogeneous clusters

and with irregularly structured data)? Are there algorithm dependencies that must be

considered? Does the processor wait (and waste time being idle) or does it get more

work? Who assigns this work? All these concerns must be considered when maximizing

the efficiency of a particular parallel program.

2.2.2 Programming Challenges

Parallel programming also brings with it a host of new challenges to the

development process. The concurrent interaction of many tasks brings a host of new and

subtle issues.

Data race conditions occur when multiple tasks access a shared data resource, and

the results depend on the order of access. The scheduling and interaction of tasks

depends on the non-deterministic (from the software's view) behaviour of operating

system process scheduling, network traffic, etc. Yet the application itself must mitigate

these factors to retain determinism within itself. To resolve data race conditions, the

application must enforce rules of access, such as enforcing a domain-specific access

order or simply using mutual exclusion constructs to serialize access to shared data.

Indefinite postponement occurs when a task waits indefinitely on some event that

never occurs. This is a fundamental development concern as potentially all data receive

operations in a task are suspect. Programming bugs may cause a sending task to miss

18

Chapter 2: Background: Parallel Programming

sending a required message, branch to some other code path, or crash and cease to exist.

Entire computer nodes may crash due to some hardware, operating system or other

software bugs.

Deadlock is a subtler problem related to indefinite postponement. Two or more

tasks may be so intertwined in their communication that they end up waiting for events

from each other. Since they are all in a waiting state, none of the tasks resolves the

deadlock.

Communication concerns are also introduced by parallel programs. Will the

program use shared memory or message passing? Shared memory programs have

seemingly simpler communication models, but they still must be aware of data race,

indefinite postponement and deadlock pitfalls. On certain architectures (such as MOSIX

[11][72] and SGI's NUMA [19]), not all memory accesses have the same access times,

and programs must try to localize their working data set. Message passing algorithms

must also be concerned with indefinite postponement and deadlocks. Furthermore,

messages may be lost, delayed or interrupted; all challenges that must be met.

All these issues (in addition to the regular challenges of algorithm development)

could manifest as bugs in the software, leading to crashed, frozen or otherwise unable to

function software instances. When this occurs, at the very least, users should be able to

restart or continue the program without leaving any persistent data in an unused state or

leaving any stray task instances on remote nodes (“zombies,” in operating system

parlance). Ideally, the program should be built with fault tolerance in mind and continue

19

Chapter 2: Background: Parallel Programming

to run. However, fault tolerance comes with a large development cost, potential run-

time overhead and is usually not necessary for many applications.

Specialized applications running on untrusted nodes also have other

considerations. This approach is popular with volunteer computing applications

(projects where anyone can volunteer processor time) such as SETI@home [5] and

other applications such as those based on the BOINC [6] software package. In addition

to fault tolerance requirements (nodes abruptly disconnecting is the norm, not the

exception), these applications must also double check their results to protect against

malfunctioning, or more probably, malicious nodes. Malicious nodes may be motivated

by sabotage, curiosity and/or the urge to deceptively accelerate up through the

contribution charts (in cases where rewards for participation are offered). Checking a

node's work commonly involves sending its work unit to another node (or two, in the

case of triple checking). The comparisons must have some tolerances, to account for

marginal differences in results due to different processor architectures. This can be done

on all work units, a random subset, or a random subset that prefers to check new nodes'

work (as a form of trust establishment). All this requires more development work and

possibly much more runtime overhead.

Finally, all parallel programs and deployments have limits to their scalability. At a

certain point, adding more processors will not give any more meaningful speedup

(Amdahl's law [4]). By definition, only a fraction of a parallel program is able to be

parallelized. The sequential parts, the cost of communication and synchronization will

20

Chapter 2: Background: Parallel Programming

eventually dominate the application's runtime eliminating the benefits of adding any

more processors. Certain subsets of “embarrassingly parallel” applications can avoid

this up to a large numbers of processors, but few “interesting” problems are in this class.

These applications have no intercommunication requirements and are able to scale

globally, such as SETI@home and Folding@home [6].

2.2.3 Organizational Models

The programmer must also decide how best to organize and interconnect the

various task processors in the software. Certain types of algorithms lend themselves to

certain organizational models. Some of these organizational models (design patterns)

are presented here.

In the delegation (boss-worker, master-slave) model (Figure 1 (a)), one process is

the boss, while one or more processes are the workers. The workers do nothing but pull

work from the boss and return results. The boss is responsible for distributing work,

controlling overall application flow and terminating the workers. The boss does not do

any computational work itself and simply sits idle (i.e. does not consume processor

resources), waiting for requests and results from the workers. The boss may create

workers as needed, or may keep a stable of workers throughout all jobs (this minimizes

the cost of worker creation). Genetic algorithms [61] are often implemented using this

model.

21

Chapter 2: Background: Parallel Programming

Figure 1: A sample of program organizational models. Arrows indicate data flow.

The blackboard model can be considered a variation of the delegation model. In

this model, there is no boss process, but rather a collection of mostly autonomous

workers who communicate via a common, shared data “blackboard”. Workers, when

ready, access the blackboard, determine what they should do, and return later with

results and new units of work. This model is common in autonomous agent systems.

In the peer-to-peer model (Figure 1 (b)), all the processes are more or less equal,

each doing the same work. This implementation is the closest to a pure SIMD (or

22

Chapter 2: Background: Parallel Programming

MIMD) implementation. Each worker in this model performs the same algorithm on

their own subset of the dataset, exchanging data at various intervals. One worker

(usually the first, initial process), must create the others, parcel out data and combine

the results. This little bit of sequential overhead cannot be avoided and does not detract

from the overall algorithm design. Image processing often lends itself to this model.

In the pipeline model (Figure 1 (c)), each process or thread handles one step in a

multi-step process. This is an example of dividing by task, rather than by data, and can

be considered a type of MIMD implementation. Nodes may be assigned tasks due to

their unique resources (for example, database stores) or specialized hardware (such as

some data acquisition instrument) or powerful processor configuration. The pipeline

model, due to its serial nature, is highly prone to developing bottlenecks. One node will

be the limiting factor in the chain, decreasing the efficiency of the whole application.

This presents a load balancing challenge to the developer, who cannot simply add more

processors. The pipeline model is often used in distributed applications, where nodes

are brought together for their specialized resources, rather than just processor time

contributions.

The producer-consumer model can be considered a subset of the pipeline model.

One task produces data (gathered from some source) to be processed by the consumer.

This is often used in client-server configurations for distributed applications.

Finally, the models can be combined into a composition (Figure 1 (d)). This is

often the result of combining algorithms, either sequentially or in a nested (caller-callee)

23

Chapter 2: Background: Parallel Programming

fashion. This model comes in many configurations.

2.3 Standard Libraries

Many modern operating systems contain multi-tasking and multi-programming

features. These features may be utilized by any program, without the need for

specialized libraries or configurations. This section will discuss some of these built-in

features that many operating system provide.

2.3.1 Multiple Single Instances

The most basic form of multi-processing is starting and executing multiple

instances of the same program, but with different data, on one host computer. The

instances themselves work in isolation and do not communicate with each other. The

programs are SIMD and are divided by data. Each instance either has different data or is

running the same data with different parameters. They usually do not process different

parts of the same data (as this would require inter-instance communication). When these

tasks are executed on a multi-processor computer, then the total work performed often

scales linearly (assuming no other bottlenecks) with the number of processes run

simultaneously, up to the number of processors.

This simplistic technique has drawbacks. Single work tasks are not split up, and

the individual jobs themselves are not performed in parallel. As there is application

specific no process manager, there is no automated load balancing to optimize resource

utilization. The user, in fact, must often manage the processes manually, a tedious

24

Chapter 2: Background: Parallel Programming

process that can be somewhat helped by the use of shell scripts.

This technique requires a modern, preemptive multi-tasking operating system. All

desktop computers sold today include operating systems with this capability, including

Microsoft Windows, Apple's OS X and Linux. This capability allows the operating

system itself to preempt a process and take back control of the processor. The operating

system then gives control to another process, time slicing the processor's time between

all running processes. This gives the impression (to the processes) that they are running

simultaneously. On multi-processor computers, they actual do execute simultaneously,

resulting in a work load speed-up.

Certain operating systems use cooperative multitasking. These include older

desktop operating systems (such as Microsoft Windows 3, or Apple's System 9) and

many embedded operating systems, such as those found in cellular phones. These

operating systems require the process itself to explicitly yield control of the processor.

Such operating systems, by design, lack the capabilities to utilize multiple processors

and provide desktop parallelism.

2.3.2 Threads

Threads are an important feature of a preemptive, multi-tasking operating system.

They are standard on all modern, computer operating systems, and provide a

lightweight and powerful mechanism for achieving parallelism within a single program

instance. Under UNIX and UNIX-like operating systems, the POSIX threads API [21] is

25

Chapter 2: Background: Parallel Programming

often used, while Microsoft Windows has its own API. There exist many other

interfaces over these interfaces, such as Boost Threads [16][57] (and soon standard

C++), Qt [14][87] and Scopira Threads (Section 4.1.4). These all help in reducing

typical thread programming errors as well as provide a generic interface for writing

portable programs.

A thread is a scheduled operating system execution stream. Typically, all

processes have one main thread and an address space. Processes each contain an

instruction pointer, stack, and some state registers. Additional threads are sometimes

known as lightweight processes, as they are much less resource intensive than multiple

processes but still are scheduled like normal processes, and (on multi-processor

hardware) actually run concurrently with other threads in the same process and memory

space.

Threads have their own stacks but share the same address space, global variables,

and dynamic memory heap with other threads. There is only one instance of the address

space among the threads in the same process: changes in this address space are

immediately visible to other threads. This makes intercommunication between the

threads fast, especially for shared data, which does not need to be explicitly transferred

or duplicated at all. In some ways, this also makes them easier to program but this is not

always the case, as described below.

Threads may “communicate” with each other by placing messages and data in

some shared data structure. Access to shared memory must be synchronized and

26

Chapter 2: Background: Parallel Programming

sequenced so as to prevent race conditions that may occur if one thread reads the

memory before another associated thread has finished writing it. For this, the thread API

will provide a collection of synchronization primitives that threads can use to coordinate

access. These typically include:

Mutex (mutual exclusion or critical section) objects provide the concept of a lock,

to protect and sequence shared data access. A mutex can either be unlocked or locked by

a thread. When another thread attempts to lock a mutex, it will block (wait) until the

existing thread unlocks (releases) the lock. Alternatively, a thread may timeout waiting

for a lock, and may try again (polling) or perform some other action. A thread with an

active lock may relock the same mutex: this aids in the development of certain

(recursive) algorithms.

A condition variable provides a method of thread signaling. One or more threads

may wait on a condition, while other threads may signal them. The alternative,

constantly polling a mutex, is both computationally wasteful and inaccurate, as there is

some latency between lock attempts during which the receiving thread will never

operate on messages. Conditions are often coupled mutexes. A wait operation is used to

unlock a mutex and wait for the condition to be signaled (and re-acquire the lock on

receiving the signal). This is a common programming pattern as a condition is often

used to signal the arrival of some data, which is then stored in some shared variable.

Finally, read/write locks provide a specialized variant of mutexes. Read/write

locks allow either one writer exclusive control of a resource, or many readers to share

27

Chapter 2: Background: Parallel Programming

it. This increases concurrency over standard mutexes, as readers are now no longer

forced to wastefully wait for each other to release locks. Obviously, writers and readers

cannot share the resource at the same time. Read/write locks can be implemented using

normal mutexes. However native read/write locks are preferred, as they are able to solve

subtle scheduling and contention issues that may not possible with standard mutexes.

For certain classes of simpler communication problems, some libraries (such as

QtConcurrent [88]) provide some additional concepts around threads that do not require

the use of the previous primitives. They include the concept of futures [45], which

represent the results of some future operation. The main thread spawns a function in the

background, is given a future token and uses the token to poll and, when ready, retrieve

results from the completed background thread. Primitives for the map-reduce [27]

functional paradigm may also be provided. If an algorithm can be broken down into

mappers (data converters) and reducers (consolidators/mergers of converted data), then

the framework can take care of setting up and applying the user-provided functions until

algorithm completion. Google [40] is a major proponent of this technique used in their

search engine and other applications.

Despite the availability of these primitives, concurrent programming with threads

can still lead to many subtle and difficult to debug programming errors. This is

especially true for the inexperienced programmer, who may be tasked to implement

complex numerical or other algorithms.

Threads also have some disadvantages. Any thread that crashes or faults, may

28

Chapter 2: Background: Parallel Programming

bring down the whole process and all the other threads in it. This makes threaded

applications, in some sense, less fault tolerant. All threads have complete and equal

access to the address space, therefor requiring all threads to be trusted and preventing

any sandboxes of untrusted or foreign code.

Programs that do not want or cannot have (because of lack system support) native,

preemptive threads, may use pseudo-threads (or user-level threads). Pseudo-threads

may be implemented in the operating system or in the application itself. These threads

only return control back to the scheduler when they either explicitly yield control or call

an I/O or other blocking function (which in turn yields control). After control is

returned, another thread is given control. Obviously, these threads (within a single

process) cannot utilize multiple processors, as they share only one actual operating

system thread. Pseudo-threads are particularly useful if the thread programming model

is desired, for example in I/O programming, but preemption and multi-processing is not

required. It is particularly useful on smaller (e.g. embedded) platforms that do not have

a preemptive multi-tasking operating system or capable processor, such as those found

in smaller devices such as cellular phones. Many runtimes or virtual machines of

interpreted languages also start with a pseudo-thread model, due to its portability,

simplicity and low thread switching overhead.

2.3.3 Interprocess Communication

Many operating systems provide additional methods for interprocess

29

Chapter 2: Background: Parallel Programming

communication. This section will give a brief overview of the methods commonly

provided in UNIX and UNIX-like operating systems (such as Linux).

Pipes are specialized file-like objects that allow two related processes to

communicate. Pairs of processes may be chained from the command shell by the user

when they are launched, or with the popen system call. Pipes are basic, untyped binary

streams, although text is usually sent.

A FIFO (first-in, first-out) is a bidirectional pipe offered by a program with an on-

disk “name”. This allows unrelated processes to exchange data. The mkfifo system call

may be used to create them.

UNIX-Domain Sockets are similar to FIFOs in that they are local to one host and

have an on-disk name or handle. However, they offer a more featured API than simply a

plain file stream, utilizing the socket interface that is also used for TCP/IP and UDP/IP.

This way, they can be thought of as an efficient, local machine-only network socket

system.

System V IPC is a collection of interprocess communication primitives that

includes: messages queues, shared memory, and semaphores. Message queues are lists

of messages (each with a fixed maximum size) for a receiver, where order is preserved.

Shared memory allows processes to create and share segments of memory, where all

may examine and change the contents of the shared segment. Finally, semaphores are

counters (with special operations defined on them) that are used to provide

synchronized access to shared data objects across multiple processes.

30

Chapter 2: Background: Parallel Programming

These techniques, although functional and fast, tend not to be popular with

parallel algorithm developers. For developers who go to the trouble of partitioning their

algorithms into multiple processes, there exist better library-based solutions for message

passing. Such libraries (discussed in the next section) bring many benefits over the

esoteric and platform-specific APIs discussed here, including enhanced ease of use via a

simpler API. They are often more tuned for group and numerical computing and multi-

platform support and data manipulation.

2.3.4 TCP/IP

The Transmission Control Protocol/Internet Protocol (TCP/IP) is one of the

standard intercommunication protocols of the Internet and of many local area networks.

It is a globally deployed networking standard that is understood by the vast majority of

networked devices. All modern operating systems provide programming interfaces for

communicating with TCP/IP. The TCP/IP protocol provides an error free, ordered and

reliable network stream. Its sibling protocol, the User Datagram Protocol/Internet

Protocol (UDP/IP) provides connection-less datagram messaging, which does not

guarantee arrival or delivery order, and as such is more efficient for applications that do

not require these guarantees.

Programmers may use TCP/IP directly to do cluster and parallel computing;

however, it only provides a reliable, bidirectional, binary data pipe between two

processes. Programmers themselves therefore must manage how their objects get

31

Chapter 2: Background: Parallel Programming

transferred over this binary pipe, including connection setup and maintenance, message

signaling/framing, message routing (if not direct), and data marshaling. Parallel

application programmers are often better off using a messaging passing library, which

performs all theses functions in a well tested and standard manner. Message passing

libraries may also transparently utilize other transports, such as those tuned for local

host communication or on specialized communication hardware, further increasing

communication efficiency in certain cases.

2.4 Message Passing Libraries

A message passing library is a software library that provides an API for sending

and receiving messages, and possibly other auxiliary functions. These libraries provide

several benefits over operating system specific libraries. A platform independent API

does not lock the programmer into one operating system, and provides data collection

and translation (marshaling) functions for transferring data between different computer

architectures. These libraries are able to adapt to various communication requirements

all behind the same API, such as using a thread-implementation for within-process

communication or network sockets for basic inter-host communication. Such a library

also performs many of the common setup and maintenance functions required for

cluster computing, removing this task from the programmer. Finally, the API may be

better tuned for numerical computing, increasing programmer productivity as many

common functions do not need to be redeveloped.

32

Chapter 2: Background: Parallel Programming

2.4.1 MPI

The Message Passing Interface (MPI) [68][99] is perhaps the de facto standard in

message passing libraries. It is an API standard [73][74] defined by a committee, the

MPI Forum. There exists free (such as MPICH [42] and LAM [20]) and commercial

(such as Scali/Platform MPI [84]) implementations as well as specialized

implementations (such as USFMPI [22] which has a threaded implementation). Some

implementations include optimizations for specific communication hardware, such as

Infiniband [51]. The specification is language independent with C and Fortran

implementations being the most common. The C++ implementation tends to often be

ignored by C++ programmers, as it contains only minor differences over the C version

and shies away from using more ambitious C++ features.

The standard is designed for communication for both workstation clusters and

specialized parallel processing super computers. The flexible API contains many

constructs for dealing with a variety of communication types (such as broadcasting,

scattering, and gathering) and striped array configurations, permitting library

implementation optimization opportunities. The plethora of options can sometimes be

confusing and error-prone, but are necessary for completeness.

The popularity, completeness, and ubiquity of the MPI standard and its

implementations makes it a solid foundation on which to build parallel processing

applications.

33

Chapter 2: Background: Parallel Programming

2.4.2 MPI (C++ API)

The MPI standard provides a C++ version of the API potentially useful for C++

programmers. Although enticing for C++ programmers, this API is a basic port of the C

API. It converts some core MPI data types (and their functions) to objects (and

methods), but still retains a very C-centric approach to pointers and numeric arrays. It is

rather conservative in its use of C++ features, ignoring such facilities as generic

programming or object serialization. C++ programmers may sacrifice the few features

that the C++ MPI API does provide and simply use the C API, as it affords them greater

source code compatibility with existing C algorithms.

2.4.3 PVM

PVM, Parallel Virtual Machine [37][85], is a software package for the parallel

networking of computers. It permits a group of processes to cooperate on a network (via

message passing) to solve problems in parallel. It includes an API for message passing,

process management and fault tolerance (as well as other services), a multi-platform

implementation and management software.

PVM supports many platforms and enables the connection of dissimilar

computers to form heterogeneous clusters. The PVM implementation takes care of data

marshaling and otherwise hiding platform differences. This encourages users to pool all

available computational hosts together, increasing performance and efficiency.

Programs are free to use platform-specific optimizations, however, when they run on

34

Chapter 2: Background: Parallel Programming

preferred hardware.

Unlike MPI, PVM has one primary implementation. This focuses the community

and testing on one package, at the risk of diversity, specialization, and optimization

issues. PVM, via its process manager programs permits processes (if so configured) to

join and leave the system at will. This tends to permit more ad-hoc use, and is

particularly useful for small to medium sized clusters..

2.4.4 Charm++

Charm++ [65] is a C++-based object-oriented parallel programming library

developed by the Parallel Programming Group at the University of Illinois based on

Charm [35][56]. It aims to enhance C++ programmer productivity yet still retain good

performance. Charm++ is available on most desktop and workstation platforms and also

includes support for many super computing architectures such as: BlueGene,

Origin2000, and various Cray systems.

Charm++ programs and algorithms are decomposed into a number of cooperating

objects called chares (concurrent objects) that communicate with other chares via

messages (communication objects). Processes are dormant and only awakened (and

assigned to a processor) when messages arrive. This delayed scheduling approach

minimizes scheduler use and complexity. Load balancing, in general, is dynamic and

adaptable but static load assignments are also available.

Charm++ uses its own Interface Description Language (IDL) to define the

35

Chapter 2: Background: Parallel Programming

messages remote objects may receive. Given a user supplied object specification in this

IDL, Charm++ will produce various standard C++ files that are subsequently integrated

with the application. Although cumbersome at first, this permits programmers to treat

remote objects almost as if they are local objects via an asynchronous CORBA-like [96]

calling system, as Charm++ marshals and packages the calls as message objects and

sends them to their destination.

Charm++ also includes Adaptive MPI (AMPI) an implementation of a significant

subset of MPI 1.1 over the Charm++ system. This permits many MPI programs to be

used and tested on Charm++ without significant change. The system reuses the dynamic

and adaptive nature of Charm to bring load balancing to MPI applications, giving MPI

applications additional deployment options.

Charm++ shares many technical similarities with the work described in the thesis,

but with significant differences in design goals. For example, developer

usability/application integration is not a focus of the Charm++ library, resulting in

cumbersome deployments and integration approach. In particular, Charm++'s use of an

IDL to specify and formalize messages complicates embeddability and integration by

requiring that the developer learn a new language and use additional utilities during the

build process.

2.4.5 CORBA

CORBA [96] is a standard for cross-platform object-oriented programming

36

Chapter 2: Background: Parallel Programming

defined by the Object Management Group [76]. It permits the programmer to distribute

objects within a program to different processes, usually on different hosts connected via

a network. The programmer is then able to interact with these objects, almost as if they

were typical, in-process objects.

In practice, the interaction with remote objects is not completely transparent.

There are some significant time commitments required for the design and development

of the distributed objects. After the objects are instantiated, the programmer must also

be aware of many limitations when dealing with the remote objects. The remote objects

may reside in different processes and thus in different memory spaces, so the

programmer may not use traditional pointers to interact with them. This limits the

interaction with remote objects to what is defined by the objects specification – usually

to public method calls only. Performance (latency and total throughput) with remote

objects is also limited by the network. Finally, method calls on remote objects can fail in

drastically different ways from in-process objects, usually because of network,

hardware or software issues. The programmer must account for this by designing the

application to be robust and able to account for catastrophic failures in core, common

objects. Using exceptions, an error handling feature provided by many languages,

including C++ (but not C or Fortran), developers can make their applications more

robust, but without the clutter of error checking tests after each remote method call.

CORBA is a standard with many different implementations, some tuned to

different deployment environments and priorities. The objects themselves are specified

37

Chapter 2: Background: Parallel Programming

in a language-neutral IDL, which is later compiled into target programming languages.

The generated code provides data marshaling (gathering and conversion of data

parameters for network transport) for the clients, and skeleton implementations to aid in

implementing the objects on the server.

Pointers within one processes' address space, a typical method of retaining a

handle to object instances, cannot be used in distributed applications. CORBA uses

opaque Interoperable Object References (IORs) as handles to distributed objects within

a network. These handles contain all the information needed (such as host address and

port) to access and use a distributed object instance.

CORBA provides facilities to convert well known names or signatures into IORs.

This allows applications to find their remote components more easily, without the

manual propagation of IORs. The basic name service provides basic name to IOR

resolution. This service is contextual and allows the grouping of similar names into

contexts with a scalable recursive look up. A more dynamic and decentralized trading

service learns and discovers objects within a network. Objects advertise (“exports”)

services while clients search for (“imports”) services. The trading service introduces

clients and services by matching their service requests and advertisements.

Distributed computing (as encouraged by CORBA and similar technologies) has

notably different goals than parallel programming message passing libraries, which are

designed for groups of processes to quickly and efficiently exchange loosely defined,

ad-hoc data with each other. Distributed computing is useful for connecting and sharing

38

Chapter 2: Background: Parallel Programming

resources (as in the consumer-producer or pipeline program organization models)

spread over different machines, connected via a network and achieves this flexibility

through higher runtime overhead. Distributed computing may also be used to unify

objects or application pieces developed by different programming teams or at different

times. Distributed computing is also well adapted to agent programming, which

sometimes requires the ad-hoc, multi-platform, multi-languages facilities that are

provided.

2.5 Task Based Libraries

Task based libraries present a different approach to parallelism than that of

message passing libraries. In a message passing library, the programmer defines both

the tasks and the intercommunication sequences between them. In a task based library,

the programmer simply provides the tasks, which are assumed to have a simplistic

input-output processing model. The library then performs all the resource management,

data partitioning and transport, and scheduling for the programmer.

The message passing library approach is more flexible and is able to handle more

communication models at the cost additional complexity. For algorithms that can be

decomposed to independent tasks however, a purely task based approach may be

beneficial as it requires less library-specific setup and communication code. Task based

libraries and approaches can also be layered (and used) over message passing libraries.

Some examples of task based libraries are now discussed.

39

Chapter 2: Background: Parallel Programming

2.5.1 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) [6]

middleware package is a collection of software to aid in the building and distribution of

volunteer and grid computing projects. These types of projects involve large numbers of

nodes (potentially millions) with no inter-node communication. BOINC was originally

part of the SETI@home [5] project but it broke out into its own project when its utility

in other work became apparent.

BOINC provides a programmer API for job and results submissions, data transfer,

software for job management, account management and web site administration.

Contribution tracking and ranking is particularly important as it provides feedback and

motivation to volunteers. Developers need only supply the application code specific to

their algorithm.

Volunteer computing projects depend on the donation of computer time from

desktop computer users on the Internet. These worker nodes are untrusted and

anonymous, and special considerations must be implemented when utilizing them. In

addition to fault tolerance requirements (nodes abruptly disconnecting is the norm, not

the exception), these applications must also (at least) double check their results to

protect against malfunctioning, or more probably, malicious nodes. Malicious nodes

may be motivated by sabotage, curiosity and the urge to deceptively accelerate up

through the contribution charts.

BOINC provides facilities to help manage untrusted nodes in volunteer computing

40

Chapter 2: Background: Parallel Programming

projects. This includes tracking and rechecking nodes' work by resubmitting jobs to

other nodes, and comparing results for validity. Doing this for every job, although

thorough, would be inefficient. For this BOINC includes many options for performing

this check on only a subset of the submitted jobs. BOINC can also use a credit point

system to assign a trust reputation to users. As the users gain trust, their work is checked

less.

2.5.2 QtConcurrent

The Qt Library [14][87] is primarily a library for multi-platform graphical user

interface (GUI) desktop application development. It contains an API for drawing on

screen graphics, managing interactive widgets and many other utility areas that are

useful to developers who want to build cross-platform applications. One of these areas

includes a threading module that provides a consistent multi-platform API around

threads and threading primitives such as mutexes and semaphores.

In addition to basic thread primitives, Qt offers the QtConcurrent framework that

provides high-level APIs that make it possible to write multi-threaded applications

without dealing with lower-level primitives. The framework also provides some features

specific to the Qt GUI library such as asynchronous function calling that frees the GUI

thread from doing work, resulting in more responsive GUIs.

The QtConcurrent API uses a task concept, where programmers supply the basic

algorithm task code, a data set, and then lets QtConcurrent partition and execute the

41

Chapter 2: Background: Parallel Programming

algorithm. The library performs the thread management (usually via flexible thread

pools) and scheduling. This lets programmers concern themselves more with their

specific algorithm code rather than thread management and proper thread primitive

usage.

Background tasks can be managed by the calling threads via a future concept.

When a background thread or thread set job is launched, the calling thread is given a

future token that represents the future (not yet computed) return value of the

background computation. The caller may query or wait on the future when it is ready,

and upon completion can obtain the results of the background operation. This basic but

powerful concept frees the user from having to manage thread processes.

QtConcurrent is useful for applications already utilizing the Qt library that need a

small amount of concurrency features. However, it lacks many features found in other

dedicated task libraries, and also (by design) does not contain any support for cluster or

distributed computing

2.5.3 Threading Building Blocks

Threading Building Blocks (TBB) [89][113] is a C++ template library from Intel

Corporation. With the advent of multiple processing cores in consumer desktop

machines (rather than increasing clock rate), Intel wants to increase multi-processing

capabilities in standard desktop applications. It hopes to encourage such multi-threaded

programming via the TBB library.

42

Chapter 2: Background: Parallel Programming

TBB, like QtConcurrent, provides a task based concept rather than thread and

thread-primitives (mutexes, semaphores) approach to multi-programming. Programmers

supply the basic algorithm task code, a data set, and then lets the library partition the

data and run the algorithm. The library performs the thread management (usually via

flexible thread pools) and scheduling. This, again, lets programmers concern themselves

more with their specific algorithm code rather than thread management and proper

thread primitive usage.

This approach is similar to OpenMP (discussed in Section 2.6.1) in theory, but in

practice is much different (in implementation). TBB is purely a C++ library using

standard C++ constructs and features. Unlike OpenMP, it does not require a specialized

compiler or non-standard language extensions.

TBB is able to work with other threading libraries and with OpenMP. It is also

designed with nesting in mind, allowing all levels of a program to be parallelized. It

uses a flexible, dynamic scheduling algorithm that supports work stealing (moving work

from overloaded processors to idles ones). TBB, however, is only for threading and

does not scale beyond one host such as for a cluster of workstations.

2.6 Language Extensions

Most modern and mainstream programming languages were not designed with

parallelism in mind. The easiest way to add parallelism to an application using such

languages is via a code library, extending the functionality of a language without

43

Chapter 2: Background: Parallel Programming

changing the language itself.

An alternative to code libraries is to extend the language (or create a new

language) with parallel concepts, such as iterators and synchronization operations.

Parallelism constructs become a natural and integrated part of the language, fully

checked during the compiling process with instant error feedback.

Switching (or updating) a user's programming language requires a larger

commitment from the programmer. The programmer must now use a specialized

compiler, which may be costly, or may not perform as well as the non-parallel compiler

in other areas. Unless the extensions are optional, the programmer is now committed to

this (possibly) niche compiler for all future projects and platforms.

Alternatively, language extensions may be implemented as code translators that

transform extended code to standard code. Although complicating the build process, this

technique allows the continued use of existing (and trusted) standard compilers for

parallel projects.

Finally, there is research (such as SUIF [3][44] and the Intel Compilers [52]) into

making compilers automatically parallelize serial code. This would be a panacea for

parallel code development: free parallelization without any added development work.

However, this challenging problem has had limited success as it is often difficult (due to

the inherit dynamic nature of many programming languages) to fully statically (at

compile time) deduce a program's structure without some input from the programmer.

The programmer's understanding of an algorithm's intent seems critical to being able to

44

Chapter 2: Background: Parallel Programming

decompose and partition an algorithm for parallel execution.

This section outlines some language extension-based packages.

2.6.1 OpenMP

OpenMP (Open Multi-Processing) [24][78] is a shared-memory (via threads)

multi-programming API standard created by the OpenMP Architecture Review Board

(ARB). The first version was released for Fortran in 1997 followed by a C/C++ version

in 1998.

Under C/C++, OpenMP permits code to be augmented with OpenMP directives.

These directives direct an OpenMP compiler to partition and parallelize segments of

code using threads. Thread management is done automatically, using a variety of

scheduling schemes, such as dynamic, static and guided scheduling, with respect to the

data.

These directives are implemented as #pragma preprocessor directives. Compilers

that do not support these specialized directives simply ignore them, permitting OpenMP

code to be compilable by conventional compilers for execution on serial machines.

OpenMP provides a support library that is linked with OpenMP programs.

Programmers may use the API provided by this library to perform additional dynamic

(at run-time) tuning and configuration. Users may also influence OpenMP-enabled

programs by setting various OpenMP-specific environment variables.

OpenMP support has often been implemented in specialized compilers such as

45

Chapter 2: Background: Parallel Programming

those by PGI [112] and Intel [52]. Recently, however, more mainstream compilers such

as the GNU Compiler Collection (GCC) [38][41] and Microsoft Visual Studio [47] have

added support for OpenMP, providing opportunity for wider adoption.

OpenMP provides a solution only for shared-memory (single host) multi-

processing. Although it can be combined with cluster computing solutions, OpenMP

itself does not provide multi-host parallel computing features.

2.6.2 Unified Parallel C

Unified Parallel C (UPC) [12][23][107] is an extension of the C programming

language designed for high performance computing on large-scale parallel machines.

The language's model is usable on clusters of machines (distributed memory

architecture) but the programmer is presented with a single address space. Variables are

grouped to processors but any processor may transparently access any other processor's

variables that are marked as shared.

Thread scheduling is set at program startup, usually one operating system thread

per physical processor (or processing core). UPC makes no implicit assumptions about

the memory and synchronization model. The programmer must explicitly use the

various provided threading primitives to synchronize access to shared data. These

primitives include typical mutexes (locks) and barriers (synchronization points).

UPC requires special, upgraded compilers to compile its extended C code. A

modified version of the GNU C Compiler (GCC), GCC UPC [39] supports UPC.

46

Chapter 2: Background: Parallel Programming

Various research compilers also support UPC.

2.6.3 Erlang

Erlang [9][10][33] is a programming language for the development of highly

concurrent, robust and fault tolerant software systems. The research work on Erlang

started in 1981 at the Ericsson Computer Science Lab with production deployments

starting in 1988. Development and interest continues to this day.

The language focuses on developing highly concurrent applications through

message passing, with a strong emphasis on boss-worker and client-server topologies.

Any function can be made into a concurrent task: giving it a PID (process identifier)

with which it can receive and send messages. In-language primitives are provided for

sub-task spawning, asynchronous message sending, receiving, parsing, and queuing.

The runtime has native support for clustering, allowing multiple Erlang process

instances to intercommunicate for performance scalability on one host, or a network of

many hosts. Finally, the language has support for multiple versions of functions,

building a foundation to allow in-place updates of live software resulting in no

downtime, a feature critical to demanding, high-availability domains.

The language, its libraries and runtime have been successfully used and deployed

in a variety of areas. These include Ericsson's AXD301 scalable telephone switch,

CouchDB [7][8] a schema-free database and the X2000 satellite control system

developed by NASA [2].

47

Chapter 2: Background: Parallel Programming

Erlang has been deemed a success in its particular niches. Unfortunately,

widespread adoption has been slow. Its Prolog-inspired syntax can seem alien to most

programmers, giving it an actual and psychological learning curve. Erlang does not

integrate well with C code, requiring quite a bit work to adapt and interface non-Erlang

code with the Erlang messaging model. Finally, it does not support generics and other

numerically optimized types making it cumbersome and slow for numerical computing.

2.7 Other Solutions

This section describes parallel processing solutions that do not fit in the previous

sections.

2.7.1 Mosix

Mosix [11][72] is management software for Linux clusters. Development started

in 1977 and continues on various platforms. In 1999, a Linux version was released and

immediately capitalized on the popularity for cost-effective cluster computing.

Mosix extends and enhances the Linux kernel software so that multiple Linux

kernels on separate machines can combine and present one large system image to

processes. The processing and memory resources are merged together presenting a

large, single-system image (SSI) to users and applications.

Mosix is not a programmer's library and does not need to introduce new APIs for

applications. Rather, applications run unmodified on a Mosix cluster as if they are on a

large computer. The Mosix Linux kernel provides all the standard, expected operating

48

Chapter 2: Background: Parallel Programming

system features and functions. Older applications may be reused directly, extending

their life. Usability is simplified by presenting the user with one system interface.

Multi-processing is performed via the standard operating system threading

interfaces. Applications that take advantage of single-host parallelism via threads would

scale to multi-host parallelism on a Mosix cluster. Applications can now scale to

clusters with no added development time.

Unfortunately, a Mosix cluster can only emulate a single system in interface but

not in performance. On a true single system all processes have high speed (via the

system bus) access to memory, often with uniform latency. Under a Mosix cluster each

processor only has system bus-speed access to the memory in the same node. Accessing

memory in another node requires network communication. This creates a latency

bottleneck as the much slower network is used to simulate memory reads and writes.

Most threaded applications assume very fast, random access to memory, as is

typical in most workstations. As a result, many such applications have intricate memory

access patterns or non-local (per processor) memory working sets. When scaled to a

Mosix cluster, such applications may “thrash” (abuse) the network, making the network

a performance bottleneck and severely limiting overall system efficiency, negating

parallelism speed-up.

These performance issues can be somewhat mitigated by using faster, possibly

specialized, intercommunication hardware such as Infiband [51] or SGI NUMA [19].

Persistent performance problems, however, may require some software redesign. The

49

Chapter 2: Background: Parallel Programming

redesign need not necessarily be major – developers can still use single-image threads

for multi-programming – rather the application should attempt to better localize data

and memory access per thread (which results in better local working sets for processors

and thus less network communication overall).

2.7.2 OpenCL

OpenCL [59][114] provides a standard for utilizing graphic processing units

(GPUs) in consumer 3D accelerator hardware for fast, parallel computing in the form of

GPU-computing. OpenCL is vendor neutral standard, unlike previous vendor-specific

solutions such as NVIDIA's CUDA [92]. Although not directly related to cluster

computing, GPU-computing, like cluster computing, utilizes COTS hardware to realize

large performance-price gains. However, GPU-computing can be combined with

cluster-computing to combine their respective benefits.

Thanks to the continued performance push of consumer video games, high-

performance, dedicated hardware graphics accelerators have reached mass-market

adoption. No longer is high quality 3D graphics the exclusive domain of specialized

workstations for vendors such as SGI [98]. These graphics accelerators contain highly

specialized graphics processing units (GPUs) that are capable of rendering visual scenes

orders of magnitude faster than general processors (CPUs).

By its nature, the process of rendering and rasterization of graphics onto a display

lends itself to parallelization. As such, GPUs attain their high-performance by applying

50

Chapter 2: Background: Parallel Programming

parallel processing to this problem. GPUs are composed of many smaller, simpler

processors that perform the rendering in parallel. Together, these simple processors can

easily outperform a single, but much faster general processor at this particular task.

More recently, the various parallel processing elements in GPUs have become

user-programmable, and may be used for non-graphics related functions. Developers

may compile specialized mini-programs for the parallel units and have the GPU execute

their combined programs in a highly parallel fashion, with speed-ups of an order of

magnitude or more over conventional CPUs. Hardware vendors first introduced their

own APIs and standards for these programs, such as NVIDIA with CUDA. Standards

such as OpenCL have emerged to unify APIs and provide a common language and

interface for developers.

Currently, due to hardware limitations, OpenCL programs have many restrictions,

such as: program size, memory accessibility, variety of data types, stack-less local

variables (eliminating recursive functions) and no heap (eliminating dynamic memory).

Even with these constraints, developers have been clever in applying GPU-computing

to non-graphical, but computationally demanding areas. Even so, adoption is only in the

preliminary stages and is expected to increase when some of these restrictions are

relaxed, features are added to the standard, and development tools mature.

OpenCL and GPU computing provide an additional parallel computing option for

algorithm developers. Although not directly related to general CPU parallel processing,

GPU programming requires similar proficiencies in algorithm decomposition and

51

Chapter 2: Background: Parallel Programming

design. GPU algorithms may also be combined with general parallel computing, using

traditional parallel computing to link (via a network) GPU-enabled compute nodes.

52

Chapter 3: Background: The C++ Language

3 Background: The C++ Language

3.1 Introduction

For all but the most short term (“throw away”) projects, the choice of which

programming language to use when implementing an algorithm or developing an

application is important. The language must be relatively modern (that is, still

maintained and used) yet show that it will last (and still be maintained and used in the

years to come). This requires that the language not be obscure (for finding future

developers and maintainers may be problematic). Finally, in high performance

computing and especially cluster computing, the language must be efficient, or more

specifically, allow for the creation of efficient run time executables.

Traditionally, C [58] or Fortran [63] are used when implementing computationally

53

Chapter 3: Background: The C++ Language

demanding algorithms. Developers simply require the pure speed offered only by

languages that are efficiently compiled to machine-specific code. More popular

interpreted languages – those that compile to an intermediate representation that is then

interpreted at runtime – can introduce a significant amount of computation overhead.

These interpreted languages (such as Java [55], Python [86] and Ruby [91]) are ruled

out when such delays translate to longer run-times.

Contrast this to desktop or web application developers who are more interested in

programming languages with ease of use features (such as automatic memory

management) and many software library options (fostering code reuse) rather than pure

performance.

When application and algorithm developers mix (for example, providing an

interface or visualization options to an algorithm), often a two-language approach will

be used. The computation core will be written in C and the interface in an interpreted

language, such as Java. The two mix either via an embedded approach (in Java's case,

via JNI, the Java Native Interface) or via a network communication approach. Examples

of this approach can be found in MATLAB [97][111] and Maple [67].

The C++ language provides benefits to both application and algorithm developers.

To the algorithm developers, it provides various features (some of which will be

enumerated in the following sections) that make code more robust, concise and flexible,

yet still compile to fast machine code. To the application and algorithm development

teams, it offers a unified language that may straddle both the domains of algorithms and

54

Chapter 3: Background: The C++ Language

interfaces in one efficient and flexible package.

C++ is often overlooked by programmers with the perception of it being too large

a language, bloated with unnecessary features, ignorant of their uses and applications.

With enough patience and time, developers will learn of each feature's particular use

and how it makes for writing better program and libraries, without sacrificing

performance.

3.2 History

Bjarne Stroustrup began designing the C++ (at the time, C with Classes)

programming language in 1979 while at Bell Labs with the hope that it would aid in the

development of a network-distributed UNIX operating system kernel [105]. Having had

previous positive experience with Simula in his Ph.D. work, but negative experiences

with its performance and scalability for larger systems, Stroustrup vowed never again to

tackle large projects with inadequate programming tools and languages.

The C language [58], chosen as the base for C++, is flexible and efficient, and its

implementations widely available and highly portable [105]. C is efficient as its low-

level operations, such as bit-manipulation and unchecked type conversion mirror the

fundamentals of traditional computers, crucial for performance and access to hardware

(the latter an absolute requirement when writing operating system software). C++ was

deemed a programming structure and organizational enhancement to the language, and

priority was given that they not introduce any run-time overhead compared to pure C.

55

Chapter 3: Background: The C++ Language

This no-worse-than-C (often termed as the zero-overhead rule) approach to

performance would prove to be an important feature, allowing the language to be used

in many performance-critical applications. Being built on an existing, well-tested

language meant that C++ introduced no limitations to the programmers and

immediately offered them a familiar programming style in which they could reuse much

of their existing code.

C++ was first publicly released in 1985 [105], with the publication of The C++

Programming Language [104] and the commercial Cfront C++ compiler. Although

sometimes confusingly referred to as a preprocessor, rather than emitting machine code

it emitted C code, Cfront was a full compiler front-end. Cfront did full C and C++

syntax and semantic checking (with immediate error feedback), built and analyzed an

internal representation of the input and finally emitted the final C code, using C as if it

was a portable assembler. The emitting of C code allowed Cfront to use the wide

availability of various C compilers for the final machine code generation stage,

increasing the available platforms for C++ and reused the compiler optimizations

research in existing compilers.

Cfront development continued, adding multiple inheritance to version 2.0 (1989),

while version 2.1 (1990) brought the compiler in sync with The Annotated C++

Reference Manual [32] the first official standards document for the language, which

would become the starting point for official standardization. Release 3.0 (1991) added

templates and exception handling. In 1991, the second edition of The C++

56

Chapter 3: Background: The C++ Language

Programming Language [104] was published.

Since 1990, the ANSI/ISO C++ standards committee has been the primary forum

for the effort to complete C++. This was required as the user-base for C++ quickly

attracted the interest of various groups of users, tool implementors and educators. To

scale to these new demands and responsibilities, the committee was used as a forum to

debate and flesh out the needs of the various stake holders.

In 1994 the ANSI/ISO Committee Draft was registered as an official standard,

giving users and implementors a common reference or contract. Non-standard language

extensions were still created as certain niche users required, or certain vendors thought

they required. With the publication of a standard however, these extensions were made

obvious, giving users an explicit line to cross when they entered non-standard territory.

3.3 Object-oriented programming

Object-oriented programming involves the concept of grouping data and

functionality into “objects” (packages of state variables and functions) when designing

computer software. Although Simula [26] is often considered the first object-oriented

language, the paradigm did not gain mainstream popularity until the early 1990s. C and

Fortran do not support this paradigm within the languages themselves. However, most,

if not all, new programming languages do provide an object-oriented paradigm.

Traditionally, an object-oriented programming language provides the following

features [69]: (i) modularity: the concept of grouping functions and data or state (ii)

57

Chapter 3: Background: The C++ Language

encapsulation: the ability to protect or restrict data to key functions and (iii)

polymorphism: the ability to transparently treat particular object variations as some

common, abstract, ancestor type.

The first goal of C++ was to add the object-oriented paradigm to the C language,

and as such implements these concepts completely. The class construct allows the

programmer to group functions (methods) and data together (providing modularity), the

private and protected directives allow the programmer to protect data and methods

within those classes (providing encapsulation) and finally the virtual keyword

combined with class inheritance permits the programmer to utilize polymorphism.

The C programming language does not support object-oriented programming. The

paradigm could and has been simulated (for example, in the GTK+ [62][110] widget

library) with varying degrees of success. Without help from the language, however, the

programmer is often left with a more tedious and verbose system. Method calls in

GTK+ for example must include an explicit reference to the class as well as a type cast.

Creating a new class in GTK+ requires dozens of lines of error-prone setup code,

compared to one in C++ (a class construct).

Scientific algorithm programmers do not gain many benefits from an object-

oriented programming paradigm. The translation of mathematical functions and

algorithms to computer code already maps nicely to the separate functions and data

model already present in all programming languages, including C and Fortran.

However, these concepts are useful for library developers in these domains, giving

58

Chapter 3: Background: The C++ Language

library authors the ability to present new objects (such as complex numbers, or new

array structures) to algorithm developers without having to extend the language.

Applications developers, on the other hand, benefit greatly from the code

organization benefits of object-oriented programming. Desktop applications tend to be

larger (in terms of lines of code) projects, often with more authors employing a more

disparate collection of software libraries than algorithm developers.

3.4 Class Destructors and RAII

The C++ language is one of the few mainstream object-oriented paradigm

supporting languages that explicitly supports deterministic class destructors. A class

destructor is a special method function that is called immediately when an object

instance is destroyed, either explicitly from the heap via the delete operator or

implicitly as the instance exits the scope of the containing function, block or class. The

destructor is guaranteed to be called no matter how the execution path leaves scope,

including via a return or break statement, or via a thrown exception. An annotated

C++ example of this is:

void some_function(void)
{

FileObject F;
// assume that F's destructor will call F.close(),
// to terminate any resources

// open and work with F here...

if (...) {
throw some_exception(); // (1) exception thrown

}

59

Chapter 3: Background: The C++ Language

if (...) {
return; // (2) return immediately exits scope

}

// (3) F falls out of scope naturally
}

In the above example, the object F will have its destructor (which in turn calls

F.close()) implicitly called in all three locations. In another language, programmers

would have littered their code with three calls to F.close(), and calls to any other

cleanup functions for any other object they may be using. This clutters the code and

increases the chances for bugs (especially memory leaks) to creep in. In C++, this

technique is also required if the code is to be exception safe [108].

This use of destructors to automatically clean up resources implicitly has been

encapsulated in Resource Allocation Is Initialization (or RAII [109]). This concept,

where the acquisition and releasing of some resource (in this case, a file) is directly

linked to the lifetime of an object is applicable to many resources. These include

dynamic memory allocations, reference counts, thread mutexes and semaphores, SQL

queries and transactions, and graphical resources.

Interpreted object-oriented languages such as Java tend to be coupled with a

powerful garbage collection mechanism, making memory management for the

application developer much easier. This however means that object destruction is

decidedly non-deterministic, making predictable clean up code cumbersome. Java

provides a partial solution, allowing classes to clean up resources via an optional

finalize pseudo-destructor. This method will be called when the garbage collector is

60

Chapter 3: Background: The C++ Language

disposing of the instance, which occurs after some unspecified delay after its end-of-

use.

Non-object oriented languages such as C have no concept of object-methods at

all. The programmer must make all resource allocations and deallocations explicit,

unnecessarily increasing code size and the potential for bugs.

3.5 Generic Programming

Generic programming [106] (using templates or parameterized types) is a

programming paradigm that supports the design and development of functions and types

(classes) that operate on yet-unknown types. This is similar in idea to object-oriented

programming, but with a significant difference. In generic programming, the types are

reconciled at compile-time (rather than run-time) affording the programmer huge

performance gains (as the generated types are custom built to the desired types) and

compile-time type checking (reducing programming errors early in the development

cycle).

C++ is the only mainstream language that implements full generic programming

concepts with compile-time in-lining (where the bodies of functions are inserted right in

the caller's code), where generated types, classes and algorithms receive the same

support and features as native types [105] and functions. Generated types using the

template mechanism can be made to be no-worse than if the same concept was

programmed explicitly by the programmer (or via macros). This ability is vital for

61

Chapter 3: Background: The C++ Language

numeric computing where performance is critical.

In the C language, macros can be used to simulate the most basic use-cases of

template programming. However, in even those instances, macros lack such features as

proper type checking and smart linking provided by C++ templates.

Combining templates, function in-lining and operator overloading (being able to

redefine operators such as “+” or “()”) library programmers can make very powerful

numerical array types that have no-worse-than-C performance characteristics [105]. For

example, given the following C example, a 10 by 10 matrix of complex numbers of type

double, lets assign -1 to the imaginary component in the matrix element 5,5:

double the_array[10*10*2]; // 100 elements
the_array[((6*10)+5)*2 + 1] = -1;

The same much more intuitive declaration in C++ might be:

narray<complex<double>,2> the_array(10,10);
the_array(5,5).imag_part = -1;

From a performance standpoint, the two versions are identical. Utilizing

templates, function in-lining, and operator overloading, the C++ version performs the

same steps and operations as the C version but with a cleaner, more robust syntax. The

C++ version could also have run-time range checking in the element look-up that can be

quickly disabled (for well tested, post-debugged public release builds) to further

enhance code robustness. The next C++ update, C++0x will introduce concepts to help

alleviate some of the vague and verbose errors compilers sometimes emit during

template programming. Concepts, similar to interface classes in object-oriented

programming will provide an interface specification for new types. Should a type fail to

62

Chapter 3: Background: The C++ Language

fulfill a concept, a sensible error can be immediately emitted rather than emitting a more

convoluted error later, when the type is used.

3.6 Memory management

Dynamic memory allows applications to request and utilize memory allocations of

varying size as it is needed. This functionality is critical in many types of algorithms

and applications as it allows them to scale to any data set size, without wasting memory

through overestimated preallocations.

The C language's standard C library provides explicit functions malloc and free

for the allocation and deallocation of dynamic memory. The language and library

provide no aids in managing memory, the programmer must make sure to properly

manage all dynamic memory allocations. This is error prone and often leads to many

subtle and not so subtle memory errors (such as memory leaks).

The explicit managing of memory is so error prone that many new languages such

as Java and C# tout their automatic memory management as one of their key features.

These languages provide garbage collection (automatic memory management) services

to manage memory. Through the coordination of language and runtime services, all

dynamic memory allocations (and their references) are managed by the runtime and

library systems. The runtime is then able to determine when memory is no longer being

used (“garbage”) and then proceeds to collect (free) the unused memory automatically

and in the background. Although this allows some temporary memory waste, as there is

63

Chapter 3: Background: The C++ Language

some delay between when memory is no longer needed and when it is actually freed,

the convenience and reliability of automatic memory management results in a huge

boon for programmer productivity.

C++ takes a different approach to memory management than that of Java and C#.

Although the basic and explicit memory management options of C are offered (as well

as the newer type-aware versions new and delete), C++ allows library authors to

utilize the existing language facilities to create automatic memory management systems.

Utilizing generic programming, operator overloading, and RAII, programmers can

create type-safe smart pointers that behave like normal pointers, but perform additional

checks and other functionality on assignment and termination. Smart pointers can

immediately release unused memory automatically and do not require background

processing (or a specialized runtime), a feature important for memory intensive

algorithms. Smart pointers greatly enhance programmer productivity and reduce errors,

while at the same time, giving no-worse-than-C performance.

The standard C++ library provides a basic smart pointer, auto_ptr for basic one-

owner semantics and as an example of a smart pointer interface. For complex semantics,

in particular, shared ownership, developers have had to go to other libraries (such has

Boost's [16][57] shared_ptr or Scopira's [28][29][30][94] count_ptr). The new C++

update, C++0x, will include a shared_ptr class (using Boost's implementation),

providing a standard shared-ownership shared pointer implementation.

Unlike Java and C#, user types in C++ (such a complex number class) do not

64

Chapter 3: Background: The C++ Language

have to be dynamically allocated on the heap. They can be allocated on the stack, within

other objects directly or as contiguous sets in array allocations. This is vital for

numerical computing as it means a large array of n complex numbers, for example,

could be allocated as one large contiguous block of memory. In Java, this would have to

be n individual allocations of small complex instances or as two separate arrays of

doubles, each of length n (in essence, breaking the array of complex numbers into two

arrays of real parts and imaginary parts). The former case wastes (and potentially

fragments) memory and processor time, while the latter case forces the programmer to

restructure their program into primitives for performance reasons, defeating a major

benefit of using higher level languages.

3.7 Parallelism In C++

The C++ standard language and library lacks facilities for parallel multi-

programming. In the 1980s, during the early days of C++ development, multi-

programming was not in demand as it is now. Multi-processor configurations were

strictly the domain of expensive workstations and mainframes. Local computer

networks were only beginning to be widely used and Internet connectivity was typically

available only at academic and government institutions. This is in stark contrast to today

where multi-core desktops have hit the mass-market and network and Internet

connectivity is widely deployed.

The C++ standards committee is also very conservative with respect to adding

65

Chapter 3: Background: The C++ Language

new APIs. They are aware that once an API is standardized, many vendors and users

will invest in it. Changing poorly thought out or inadequate standards after they are

published wastes resources and investments and adds to user confusion. The C++

standards committee did not want to prematurely commit to untested parallel APIs and

designs.

As such, the C++ standards committee left it up to third party vendors to provide

parallel programming libraries. Although this provided competing non-standard

libraries, it did permit ideas and APIs to test and prove themselves among users. Some

C++ programmers chose C libraries, out of compatibility with C code or for other

reasons. The libraries span all the abstraction levels and ideas of parallel programming,

from operating specific threading libraries, task-oriented libraries and message passing

libraries to language extensions.

With the advent of mainstream multi-core computing, many desktop applications

(not just scientific applications) are expected to be capable of multi-processing. As such,

the C++ standards committee will include a threading API in the next C++ standard,

C++0x. This API is based on (and is almost identical to) the Boost library's [16][57]

threading implementation, and as such has had wide user-testing and feedback. This

implementation is now available in the C++ Technical Report 1 (TR1), a preview of

various new features in the upcoming update.

66

Chapter 3: Background: The C++ Language

3.8 The Standard C++ Library

The C++ standard library is relatively small compared to the libraries in Java or

C#. This is the result of C++ being under the control of standardization committees and

boards, rather than single companies (Sun and Microsoft, in the cases of Java and C#

respectively); however what is supplied is well tested and vetted, and generic enough to

be applicable to all programmers. The standard C++ library also provides a style of

library implementation and design that can be used by other libraries.

The standard C++ library provides basic string facilities via string and wstring

(wide-character), a requirement in all applications. Basic input/output facilities via an

extensible iostreams systems is included. This allows the formatting and processing of

the core data types to streams, as well as any user-data types. The streams are able to

operate on disk files and in-memory, with other sources provided via third party

libraries.

The C++ library also provides a generic (template based) container collection that

works on any data type. This collection includes re-sizable arrays (vector), linked lists

(list), associative arrays (map), sets (set) and other common containers. Using

generic programming and compile-time type generation, the resulting containers are

specific to their contained-types, resulting in the best possible performance.

Programmers never again have to re-implement these structures for their types.

General algorithms are also supplied. Functions such as searching, sorting,

partitioning, iteration and counting are provided. There are also generic (template

67

Chapter 3: Background: The C++ Language

based) functions and algorithms that can work on any data type (mostly iterators,

discussed below).

The containers and algorithms in the C++ library are brought together via the

iterator concept. An iterator is a programming object that can move or iterate through

some data set. Iterators can vary in their interface and capabilities, while their

implementations are specific to their container. The iterator concept was made to mimic

the interface of standard C pointers and pointer iteration. This has the tremendous

benefit of being able to use standard C arrays and pointers with the C++ library's

algorithms. The mixing of algorithms and containers via iterators is done at compile

time, again resulting in efficient code comparable to hand-coded solutions – vital for

algorithm developers.

Developers are of course free to use the plethora of third party libraries that build

on this foundation. Due to the power of the language itself, library developers are able

to create some high-performance compile-time based libraries without needing to

update the language.

The Boost [16][57] library is one such library that prides itself on its high code

quality standards by providing high performance, multi-platform and flexible, general

C++ libraries. It tends to follow the standard C++'s library ideals of using a broad range

of the language's features to achieve its goals. Some notable libraries in this collection

span the areas of: threading, random number generation, graph construction, an MPI

[68][99] layer, image manipulation, Python interfacing, smart pointers, regular

68

Chapter 3: Background: The C++ Language

expressions, serialization and multi-dimensional arrays. Boost's quality standards are so

high that it is often used as a testing ground for libraries and features under

consideration for feature updates to the C++ libraries. In fact, Boost's implementations

for threads and smart pointers are among some of the updates to the next C++ standard,

and may already be used in TR1.

69

Chapter 4: Background: The Scopira Library

4 Background: The Scopira Library

This chapter outlines the Scopira Library, a programming library that is used

extensively by the work in this thesis.

The initial driving force for Scopira was to develop a comprehensive, object-

oriented programming architecture using C++ for the development of applications

relating to exploratory data analysis of magnetic resonance images (MRI), especially

functional MRI [49]. Subsequently, the architecture was expanded to deal with

confirmatory and exploratory biomedical data analysis, visualization, and interpretation,

in general. This approach strikes a balance between slow interpreted languages such as

IDL [17][115] and MATLAB [97][111] and fast compiled languages such as C and

Fortran. Although well suited for algorithm prototyping and ad-hoc data visualization,

interpreted languages are simply not suitable for application development. Conversely,

70

Chapter 4: Background: The Scopira Library

C and Fortran, although efficient, lack basic and expected language features such as

object-orientation or basic memory management required for building large scale

applications. C++ was chosen to straddle the two extremes, and even though it has been

somewhat overshadowed by newer languages such as Java and C#, it is still the only

language with such features as generics and object-orientation that still compiles to

efficient machine code.

The emphasis with Scopira [28][29][30][94] has been on high performance, open

source development and the ability to easily integrate other C/C++ libraries used in the

biomedical data analysis field by providing a common OOP API for applications. This

library provides a large breadth of services that fall into the following three component

categories:

Scopira Tools provide extensive programming utilities and idioms useful to all

application types. This category contains the reference counted memory management

system, flexible/redirectable flow input/output system, which supports files, file

memory mapping, network communication, and check sum calculation, as well as

object serialization and persistence, reproducible and tunable random number

generation, universally unique ids (UUIDs) and XML parsing and processing.

The Numerical Functions all build upon the core n-dimensional narray concept.

C++ generic programming is used to build custom, high-performance arrays of any data

type and dimension. General mathematical functions build upon the narray. A large

suite of biomedical data analysis and pattern recognition functions is also available.

71

Chapter 4: Background: The Scopira Library

Finally, a Graphical User Interface Library based on GTK+ [62][110] is

provided. This library provides a collection of useful widgets including a scalable

numeric matrix editor, graph plotters, image viewers as well as a plug-in platform and a

3D canvas based on OpenGL [46][77].

The next three sections describe each of these Scopira component categories in

turn. This is followed by a section presenting a few biomedical data analysis

applications developed using Scopira and is followed by some concluding remarks.

4.1 Scopira Tools

Scopira consists of modular subsystems that can be used as needed by developers.

The Scopira Tools subsystem provides generic facilities useful in many programming

domains, not just numerical and scientific computing.

4.1.1 Memory Management

An intrusive reference counting scheme provides the basis for memory

management. The scheme is considered intrusive as it records an object's reference

count within the object itself, typically by having the object descend from a common

base class. Many libraries, such as VTK [93][116] and GTK+ [62][110] implement

similar reference counting systems.

Scopira implements a template class count_ptr that emulates standard pointer

semantics while providing implicit reference counting on any target object.

Alternatively, the intrusive_ptr from the Boost library may also be used, as

72

Chapter 4: Background: The Scopira Library

Scopira's reference counting scheme is compatible with its requirements. With either

smart pointer, reference management becomes considerably easier and safe, a vast

improvement over C's manual memory management.

4.1.2 Input/Output

Scopira provides a flexible, polymorphic and layered input/output system (Figure

2). Flow objects may be linked dynamically to form I/O streams. Scopira includes end

flow objects, which terminate or initiate a data flow for standard files, network sockets

and memory buffers. Transform flow objects perform data translation from one form to

another (e.g., binary-to-hex), buffer consolidation and ASCII encoding. Future

transformers will include CRC calculators, compressors and cryptographic ciphers.

Serialization flow objects provide an interface for objects to encode their data into a

data stream. Through this interface, large complex objects can quickly and easily

encode themselves for storage to disk or transmission over a network. Upon

reconstruction, the serialization system re-instantiates the objects from type information

stored in the stream. Shared objects – objects that have multiple references – are

serialized just once and properly linked to multiple references.

73

Chapter 4: Background: The Scopira Library

Figure 2: Scopira input/output stack

4.1.3 Configuration Handling and Plug-ins

A platform independent application-preferences handling system is supplied via a

central parsing class. This class is able to accept input from a variety of sources

(configuration files, command line parameters, etc.) and present them to the

programmer via one consistent interface. The programmer may also store settings and

other options via this interface, as well as build GUIs to aid in their manipulation by the

end user.

Using a combination of the serialization type registration system and C++'s native

RTTI (run-time type information) functions, Scopira is able to dynamically (at runtime)

74

Chapter 4: Background: The Scopira Library

allow for the registration and inspection of object types and their class hierarchy

relationships. From this, an application plug-in system can be built by allowing external

modules (e.g. dynamic link libraries) to register their own types as being compatible

with an application, providing a platform for third party application extensions.

4.1.4 Other Utilities

Finally, the tools subsystem provides a variety of other services and interfaces.

Native operating system threads (via the POSIX threads interface) are presented as C++

objects, with mutex locking and shared areas accessed via classes that follow the

Resource Acquisition Is Initialization (RAII) (Section 3.4) principle. Generic arrays

provide a lightweight (yet still STL-like) array class that is simpler than the STL's

vector class and not specific to numeric computing as is Scopira's narray. Random

number generation (inspired by Boost's random library) is also included. Universally

unique identifies (UUIDs) and uniform resource locators (URLs) are also provided.

XML processing (provided by the libxml2 library) is an optional feature, allowing one

to build open and easy to use data file formats.

4.2 Numerical Functions

The central area of Scopira that is relevant to numerical and parallel computing is

its array class, narray. This section will describe the background, reasoning and design

of these arrays in depth.

75

Chapter 4: Background: The Scopira Library

4.2.1 Background: Arrays

The C and C++ languages provide the most basic support for one dimensional

arrays, which are general and are closely related to C's pointers. Although usable for

numerical computing, they do not attempt to provide the additional functionality that

scientists demand, such as easy memory management, intuitive mathematical

operations, or fundamental features such as storing their own dimensions. Multiple

dimensional arrays are even less used in C/C++, as they require compile-time

dimension specifications, drastically limiting their flexibility.

The C++ language, rather than design a new numeric array type, provides all the

necessary language features for developing such an array in a library. Generic

programming (via C++ templates, that allow code to be used for any data types at

compile time), operator overloading (e.g. being able to redefine the plus “+” or array

access “[]” operators) and inlining (for performance) provide all the tools necessary to

build a high performance, usable array class.

The C++ standard template library (STL) uses these facilities to create the

vector class. This class, along with its sibling containers and variety of generic

functions provides an example of how to design the interface and implementations of

flexible generic containers and algorithms. The STL vector class is a general vector

class, designed to support all data types. Although a significant improvement to raw C

arrays, these “arrays” still lack many features useful in numeric computing, such as

multi-dimension arrays and subset-slices. One method of creating multi-dimensional

76

Chapter 4: Background: The Scopira Library

arrays with the vector type involves having a vector of vectors (and so on for higher

dimensions). Although this works in limited situations, it has many disadvantages such

as being less efficient, non-contiguous memory storage (eliminating the useful ability to

treat the multi-dimensional array as a single one-dimensional array), inconsistent

interfaces and verbose type names.

The C++ STL touches on the topic of numeric arrays with its valarray concept.

This is a generic array container designed for numeric computing with hooks for

providing high performance element-wise operations. These classes were designed for

specific vector operations, specifically high performance bulk operations, and were not

intended to be general numeric arrays with ease of use as a goal. However, this

container can be used as a building block for building an end-user array class

(examples are even provided in [106]), if only indirectly (that is, as a guide for

interfaces and implementation).

The valarray types introduce another concept not addressed by the standard

vector type or C arrays: the concept of slices. Via the slice_array type (and

mask_array and indirect_array types, which take this idea to different ends), slices

allow the program to view subsets of an array via an array-like interface. By storing

basic information such as strides (that is, which nth element does the slice use the

original array), general slices operating on any dimensions within the host array can be

made. This powerful concept is incredibly useful and is necessary for any serious

numerical array framework.

77

Chapter 4: Background: The Scopira Library

Users have created their own libraries to fill the void left by the lack of

standardized multi-dimension array classes in C++. These libraries vary in performance,

API style, and focus. Some of the better established packages will now be discussed

here.

The highly regarded Boost C++ libraries [16][57] contain not one, but two

numerical array libraries, both introduced in version 1.29 of the library collection:

Boost.MultiArray and uBLAS.

Boost.MultiArray provides a basic, but complete n-dimensional array class with

support for views and slices. The library, like many of those in the Boost collection,

utilize advanced C++ features and idioms to achieve their goals of performance and

completeness, sometimes sacrificing ease of use for newer C++ programmers. This

library, at its core has the most in common with the Scopira narray classes, differing

mainly in their notions of element access and use of temporaries.

uBLAS is a C++ library that provides BLAS (Basic Linear Algebra Sub-programs)

functionality for a variety of different matrix types. Building on BLAS Fortran library,

uBLAS is designed with performance in mind (especially with the goal of being no

worse than its Fortran predecessors) and focuses on linear algebra operations and matrix

data types. The library supports a variety of matrix types (including dense, packed and

sparse matrices) but does not generalize at all to larger dimensions.

The Blitz++ library [15] is an older library that provides an n-dimensional array

class, complete with slicing. The API focuses on the array classes itself, and does not

78

Chapter 4: Background: The Scopira Library

offer a collection of algorithms, or interpolation aids with visualization systems or other

libraries. The development of Blitz++ has slowed after a decade, and has switched to a

maintenance mode without reaching a seminal 1.0 version.

Although there are numerous implementations of n-dimensional array classes,

algorithm developers and users often need not be too concerned with over committing

or being locked into one particular implementation. Due to the large influence of the

C++ STL on the various library developers, there are only a small set of element access

styles that are used. Many also offer raw C-array like access to ease interfacing with

other libraries. Using simple adapter classes or systematic source code refactoring,

developers may quickly update their code to work with any new libraries.

4.2.2 The nindex Class

The core Scopira array type narray uses an nindex type to generalize arrays to

any dimension. This nindex type can be thought of as the coordinates or reference of

an element in an array. This is a template type that is generalized by the dimension only

(it does not specify the element type). For example, nindex<2> is a 2-dimensional

array index (matrix) and contains two values, x and y. Similarly, nindex<1> only

contains the x value, and nindex<3> contains x, y, and z values. Internally, these are

generalized to small, non-resizeable arrays with specialization for the first few

dimensions. In addition to storing the coordinate values, this class provides operations

that are needed in building a generalized array type such as returning the product of all

79

Chapter 4: Background: The Scopira Library

the values or calculating stride arrays.

4.2.3 The narray Class

After defining the nindex concept, building basic narray array types becomes

relatively straightforward. A simplified definition of narray is:

template <class T, int DIM> class narray {
T* dm_ary; // actual array elements
nindex<DIM> dm_size; // dimension sizes

T get(nindex<DIM> c) const {
assert(c<dm_size);
return dm_ary[dm_size.offset(c)];

}
}

From this code snippet we can see that an narray is a template class with two

compile time parameters: T, the element data type (int, float, etc.) and DIM, the

number of dimensions (1, 2, 3, etc.). The actual elements are stored in a dynamically

allocated C “array”, dm_ary. The dimension lengths are stored in an nindex type,

building on that generalization.

A generalized accessor is provided, which uses the nindex-offset method to

convert the dimension specific index and size of the array into an offset into the C array.

This generalization works for any dimension size.

Another feature shown here is the use of C's assert macro to check the validity

of the supplied index. This boundary check verifies that index is indeed valid otherwise

failing and terminating the program while alerting the user. This check greatly helps the

programmer during the development and testing of applications, and during a high

80

Chapter 4: Background: The Scopira Library

performance/optimized build of the application, these macros are transparently

removed, obviating any performance penalties from the final, deployed code.

More user friendly accessors (such as those taking an x value or an x and y value

directly) are also provided. Finally, C++'s operator overloading facilities are used to

override the bracket “[]” and parenthesis “()” operators to give the arrays a more

succinct and natural feel, over explicit get and set method calls.

Although technically a violation of encapsulation in object-oriented design

principles, the narray class provides an accessor to get at the internal C array. This

access is invaluable when interfacing with other libraries or data structures, despite

bypassing all the programming checks in narray.

4.2.4 The nslice Class

The nslice template class is a virtual n-dimensional array that is simply a

reference to an narray. The class only contains dimension specification information

and is easily copyable and passable as function parameters. Element access translates

directly to element accesses in the host narray. An nslice must always be of the same

numerical type as its “host” narray, but can have any dimensionality less than or equal

to the host. This flexibility is very powerful; one could have a one-dimensional vector

slice from a matrix, cube or five-dimensional array, for example. Matrix slices from

volumes are also quite common (e.g. Figure 3). These sub slices can also span any of

the dimensions/axes, something not possible with simple pointer arrays (for example,

81

Chapter 4: Background: The Scopira Library

matrix slices from a cube array need not follow the natural memory layout order of the

array structure).

The nslice implementation is inspired by the STL's gslice_array types. That is,

in addition to basic source nslice reference and dimension size information, the

nslice contains an array of strides. These strides indicate how many raw array

elements are between the user elements in the nslice.

Programmers who wish to write more general code, should use nslice in their

interface. Not only is obtaining an nslice representation of an narray trivial (in terms

of both use and performance), but code that uses nslice is able to operate on a wider

variety of source arrays and sub slices.

For maximum flexibility, programmers should write their algorithms in a type-

free manner using C++ templates and generic programming. The nslice type has the

same “form” as an narray, that is, it has all the same accessor methods and other

operations, including producing nslices of itself. Programmers can then use templates

to allow their algorithms to take any narray-like “form” which includes nslice. These

algorithms can also generalize the actual element type allowing them to be used on any

precision real numbers or integers (if applicable) as needed.

For applications that take vectors or sequences of elements, the more general STL

style begin/end iteration is encouraged. Both narray and nslice support this, as do the

STL containers and countless other third party libraries.

82

Chapter 4: Background: The Scopira Library

Figure 3: An nslice reference into an narray data set

4.2.5 Memory Mapping

The narray class provides hooks for alternate memory allocation systems. One

such system is the DirectIO mapping system. Using the memory mapping facilities of

the operating system (typically via the mmap function on POSIX systems), a disk file

may be mapped into memory. When this memory space is accessed, the pages of the

files are loaded into memory transparently. Writes to the memory region will result in

writes to the file.

This allows files to be loaded in portions and on demand. The operating system

will take care of loading and unloading the portions as needed. Files larger than the

system's memory size can also be loaded – the operating system will keep only the

working set portion of the array in memory. However, mapping files that are larger than

physical memory must be done with care, programmers should still keep the working

set within the memory size of the machine. If the working set exceeds the available

83

Chapter 4: Background: The Scopira Library

memory size, performance will suffer greatly as the operating system pages portions to

and from disk (excessive juggling of disk-memory mapping is sometimes called “page

thrashing”).

Furthermore, as the narray class is 64-bit clean, on 64-bit architectures very

large files may be used as datasets and the operating system will page portions of the

file into memory as needed. One caveat that large-dataset programmers must be aware

of, however, is that if one element is accessed in the array, then the operating system

will load that element's complete page from disk (each page is usually a few kilobytes).

Slices that access many sparse elements will end up paging many sections to disk,

ballooning the actual working space size of slice operations that do not follow the

natural C array order.

4.3 Graphical User Interface Library

This subsystem provides a basic graphical API wrapped around GTK+ [62][110]

and consists of widget and window classes that become the foundation for all GUI

widgets in Scopira. More specialized and complex widgets, particularly useful to

numerical computing and visualization, are also provided. This includes widgets useful

for the display of matrices, 2D images, bar plots and line plots. Developers can use the

basic GUI components provided to create more complex viewers for a particular

application domain.

The Scopira graphical user interface subsystem provides useful user-interface

84

Chapter 4: Background: The Scopira Library

tools (widgets) for the construction of graphical, scientific applications, with particular

focus on the biomedical research domain. A matrix/spreadsheet like widget is able to

view and edit arrays (often, but not limited to matrices) of any size. This extensible

widget is also able to operate on Scopira narrays natively. The widget supports

advanced functionality such as bulk editing via an easy to use, stack based macro-

language. This macro-language supports a variety of operations including setting,

copying and filter selecting data within the array. A generic plotting widget allows the

values of Scopira narrays to be plotted. The plotter supports a variety of plotting styles

and criteria, and the user-interface allows for zooming, panning and other user

customizations of the plot. An image viewer allows fully zooming, panning and scaling

of narrays, useful for the display of image data. The viewer supports arbitrary colour

mapping, includes a legend display and supports a tiled view for displaying a collection

of many images simultaneously. Miscellaneous widgets such as a “joystick” control

(that permits discrete, cardinal direction panning), VCR buttons (that present “play,”

“pause,” etc. type buttons) and a random seed editor are also provided. A simplified

drawing canvas interface is included that permits developers to quickly and easily build

their own custom widgets. Finally, Scopira provides a Scopira Lab facility to rapidly

prototype and implement algorithms that need casual graphical output. Users code their

algorithm as per usual, and a background thread handles the updating of the graphical

subsystem and event loop.

85

Chapter 4: Background: The Scopira Library

4.3.1 Model-View Plugin Framework

Scopira provides an architecture for logically separating models (data types) and

views (graphical widgets that present or operate on that data) in the application. This

model-view relationship is then registered at runtime. At runtime, Scopira pairs the

compatible models and views for presentation to the user. A collection of utility classes

for the easy registration of typical objects types such as data models and views are

provided. This registration mechanism succeeds regardless of how the code was loaded;

be it as part of the application, as a linked code library, or as an external plug-in.

Third parties can easily extend a Scopira application that uses models and views

extensively. Third party developers need only register new views on the existing data

models in an application, then load their plug-in along side the application to

immediately add new functionality to the application. The open source C++ image

processing and registration library ITK [50][54] has been successfully integrated into

Scopira applications at run time using the registration subsystem.

A model is defined as an object that contains data and is able to be monitored by

views. A view is an object that is able to bind to and listen to a model. Typically, views

are graphical in nature, but in Scopira non-graphical views are also possible. A project is

a specialized model that may contain a collection of models and organize them in a

hierarchical fashion. Full graphical Scopira applications are typically project-oriented,

allowing the user to easily work with many data models in a collective manner. A basic

project-based application framework is provided for developers to quickly build GUI

86

Chapter 4: Background: The Scopira Library

applications using models and views.

4.3.2 3D Visualization

A complementary subsystem provides the base OpenGL-enabled widget class that

uses the GTKGLExt library [43]. The GTKGLExt library enables GTK+ based

applications to use OpenGL for 2D and 3D visualization. Scopira developers can use

this system to build 3D visualization views and widgets, which allows for enhanced

data exploration and processing. Integration with more complete visualization packages

such as VTK [93] [116] is also possible.

4.4 Applications

Several biomedical data analysis applications have been implemented using

Scopira [66][79][81][82][100][101][102]. Some are in-house, proprietary, and highly

specialized systems, while others are open source applications that are available to the

biomedical research community at large. These applications run the gamut from

confirmatory to exploratory data analysis, image processing, pattern recognition,

classification, and visualization. We briefly present three applications developed using

Scopira. As this thesis work uses Scopira, this demonstrates possible types of

applications that could benefit from this work.

One Scopira-based application is EvIdent® [79], an exploratory data analysis

system for rapidly investigating novel events in a set of two- or three-dimensional

images (e.g. MRI, infrared, spectroscopic maps, etc.) as they evolve over time or

87

Chapter 4: Background: The Scopira Library

frequency (or any other analysis dimension). For instance, in a series of functional

magnetic resonance neuroimages, novelty may manifest itself as neural activations over

a time course (Figure 4). The core of the system is an enhanced variant of the fuzzy c-

means clustering algorithm [13]. Fuzzy clustering obviates the need for models of the

underlying requisite biological function, models that are often statistically suspect.

EvIdent® offers several innovations: (i) biomedical researchers may probe for

unanticipated but domain-significant structure in the data; (ii) flexible generation of

unbiased, testable models; (iii) rapid analysis of data in complex cognitive experiments;

and (iv) excellent precursor and complement to any model-based inferential method.

Figure 4: Functional MRI activation map viewer in EvIdent®

88

Chapter 4: Background: The Scopira Library

Visualizing high dimensional patterns and their relative relationships, is a useful

and challenging technique that is important in data exploration and confirmation. A

Scopira-based application was developed to implement a new projection strategy, the

Relative Distance Plane (RDP) [66][100][101] which uses a similarity-based mapping

requiring only a single computation of a distance matrix, for the visualization of high

dimensional patterns and their relative relationships. RDP allows an investigator to

visually inspect (Figure 5) datasets for anomalies prior to subsequent analysis (e.g.

classification, regression, clusters). An important aspect of RDP is that certain distances

are exactly preserved in a new 2D (or 3D) coordinate system. Give two (or three, in the

3D case) reference patterns selected from the dataset, all other patterns are displayed

without any distortion of their original relative distance to the reference patterns. RDP is

a projection pursuit variant using directions defined by pairs (or triplets) of patterns

from the dataset.

Another Scopira-based application involves the analysis, visualization (via

Scopira and VTK [93][116]), and interpretation of biomedical images using optical

coherence tomography (OCT) [48], an optical imaging modality that provides

micrometer scale resolution morphological images. OCT is similar to ultrasound in

operation except that low coherent near infrared light is used instead of sound. The

light is focused onto a sample and back reflections from within the sample are recorded

to create a morphological image of the interior structure of the sample. The back

reflections occur from changes in optical density at tissue boundaries and cellular

89

Chapter 4: Background: The Scopira Library

structures. The three dimensional morphological images have an axial resolution of 10

μm and a transverse resolution of 25 μm that is superior to standard ultrasound images.

The coherence requirement of OCT in highly scattering biological tissue limits

penetration depths to 2 mm. However, the method is fully implemented in fiber optics,

allowing sub-millimetre probes to collect images via catheters and endoscopes [18].

Figure 5: RDP Separation Display

90

Chapter 4: Background: The Scopira Library

The elevation and transfer of skin flaps is essential in reconstructive surgery.

Clinical prediction of eventual tissue viability at the time of elevation can be inaccurate

and lead to reconstructive failure. A common example is that of mastectomy skin flap

necrosis in the setting of immediate breast reconstruction. A Scopira-based application

was made to help specialists delineate demarcation lines that separate dead and viable

skin areas for further processing [102].

91

Chapter 5: Design

5 Design

5.1 Overview and Goals

This chapter presents the design overview and goals of the work.

5.1.1 Relation to Scopira

The Scopira Agents Library (SAL) is the name given to the message passing

library that is the result of this work. Agents, in this context, refer to the objects that

manage groups of SAL-tasks, and has no relation to agent-based computing (e.g. [75]).

However, despite sharing a name with the Scopira library itself, SAL is a separate and

library. To underscore, Scopira is a general library for application development while

SAL is the message passing library that is the result of the research in this thesis.

SAL does use the Scopira library for certain general functions such as file and

92

Chapter 5: Design

network I/O and object serialization, and also has similar API styles and structures.

However, SAL's core concepts and its implementation are independent of Scopira and

SAL could be made to use any other library for these basic facilities.

5.1.2 Goals and Limitations

SAL's goals are to be an easier-to-use and deploy message passing library with

adequate performance for a variety of use-cases. The target audience for such a library

includes interactive application developers and parallel algorithm developers with

moderate performance and scalability needs. The algorithms should have moderate

communication needs, that is, overall algorithm performance should not be highly

sensitive to messaging throughput or latency.

Interactive (for example, GUI or Web) application developers (with new or

existing application code bases) that wish to utilize parallel processing in their

applications, quickly and seamlessly, would ideally use SAL. Their applications would

retain the same ease-of-use yet still be able to utilize multi-processor and (if detected)

multi-host parallelism, increasing performance without application complexity.

Parallel algorithm developers who have moderate performance and scalability

requirements may choose to use SAL for its ease of use and ability to quickly make

parallel applications. Utilizing SAL also gives these developers the option of embedding

their algorithms into deployable applications later on, if desired.

SAL's advantages are of course not without their trade-offs. By design and

93

Chapter 5: Design

implementation, SAL may be less efficient and less scalable than other libraries. For its

target audience, these sacrifices are acceptable, however, for some users other options

may be preferable. For example, SAL is not designed for grid computing and

communication intensive algorithms. SAL also does not, in its current implementation,

utilize specialized communication hardware or protocols.

SAL's object-oriented design, error checking and buffering makes SAL have

higher CPU and memory overhead than other optimized libraries, resulting in lower

communication throughput and higher latency. SAL's current direct message routing

implementation and simplistic API limits scalability, making it ill-suited for grid

computing or similar large-scale applications.

5.1.3 Implementation Goals

SAL, by design, borrows a variety of concepts from both MPI and PVM. SAL,

like PVM, attempts to a build a unified and scalable “task” management system, with an

emphasis on dynamic resource management and interoperability. The tasks themselves

are coupled with a powerful message passing API inspired by MPI. Unlike PVM, SAL

also focuses on ease-of-use: emphasizing automatic configuration detection and

deemphasizing the need for infrastructure processes. Using operating system threads

and C++ objects, SAL emphasizes multi-programming within single OS processes

(which are fastest for same-host communication) and embedding: providing the

complete implementation with the library (and thereby, the application). Applications

94

Chapter 5: Design

always have an implementation of SAL available, regardless of, or the availability or

access to, cluster resources.

SAL introduces high-performance computing to a wider audience of users by

permitting developers to build standard cluster capabilities into desktop applications,

allowing those applications to pool their own, as well as cluster resources. This is in

contrast to the goals of MPI (providing a dedicated and fast communications API

standard for clusters) and PVM (providing a virtual machine architecture among a

variety of powerful platforms).

SAL extends the core Scopira C++ library (Figure 6). It provides everything

needed for developers to make cluster-aware applications, including a message passing

API, implementations of this API and a host of services and other facilities. Developers

may use SAL to make their Scopira applications multi-processor and cluster-aware.

Although SAL development activities and research is ongoing, the core components

have been used in a production environment.

In SAL terminology, an “agent” refers to the “task”-managing engine in the

library that represents a node in the agent network. Tasks, as in PVM, are individual

processing entities within the system that have their own identifier and message passing

abilities. This agent object is the key broker between the application code, task

processes and the agent network. An agent delegates the actual task management and

message passing responsibilities to an internal “engine” object. The specific engine

implementation is chosen at application startup and can be based on user preferences

95

Chapter 5: Design

(for example, the user may choose to not use an available cluster) and the local network

configuration. The engines can differ by the services provided and by scheduling

policies. Although only two engines (a single-host and network-enabled multi-host

engine) are initially provided, additional engines (e.g. decentralized network topologies)

may be added in the future.

Figure 6: The SAL API Stack

5.2 Messaging API

SAL provides an object-oriented, packet based and routable API for message

passing (like PVM, but unlike MPI). This API provides everything needed to build

multi-threaded, cluster-aware algorithms embeddable in their applications.

The API uses a few key object-concepts to form the API stack. This API stack

contains the following objects: tasks (algorithm processes), contexts (a collection of

methods that a task uses to communicate with other tasks) and send_msg objects

(corresponds to a single messaging transaction). An overview of how these objects

96

Chapter 5: Design

interact is as follows:

● The SAL engine chooses a user-task to run (usually from a queue of tasks)

● The user's task object has its run method called and is passed a context object

● The task uses this context to create send_msg objects (a complimentary object,

a recv_msg object, must be used to receive such messages).

This is illustrated in Figure 7:

Figure 7: A typical call sequence (proceeds from top to bottom)

97

Chapter 5: Design

5.2.1 Tasks

Tasks are the core objects that developers build for the SAL system. A task

represents a single job or instance in the agent system, which is analogous to a process

in an operating system. However, they are almost never separate processes, but rather

grouped into one or more agent processes that are embedded into the host application.

This is unlike most existing parallel APIs, that allocate one OS process per task concept,

which, although conceptually simpler for the programmer, incurs more communication

and startup overhead, and is OS dependent. The tasks themselves are language-level

objects but are usually assigned their own operating system threads to achieve

preemptive concurrency.

Tasks have the following features and properties:

● Logic initialization and shutdown in their constructor and destructor (as with any

C++ object);

● A core “run” method, which is the central method that is called when a task

should perform its work.

● User specific methods and state variables.

The developer's focus is primarily with the task's run method. It is this method

that is passed a reference to a “context” object, which provides access to the core

messaging API. The run method signals the agent system its result code (e.g. whether it

is done or should be run again), by returning integer code. Possible signals include:

98

Chapter 5: Design

process completion, process yielding, sleep until message arrival and sleep for a time

period. The API in detail:

// interface and parent class of all tasks
class agent_task_i {

// main run method in the task interface
int run(task_context &ctx);

};

5.2.2 Context Interface

A context object is a task's gateway into the SAL message passing system. There

may be many tasks within one process and each will have a different context interface –

something not feasible with an API with a single, one-task-per-process model (as used

in PVM or MPI). Being able to embed all the tasks as threads in one process is vital for

application embeddability, a core goal of SAL. This class provides several facilities,

including: task creation and monitoring; sending, checking and receiving messages;

service registration; and group management. It is the core interface a developer must

use to build parallel applications with SAL. A selected, annotated API list is shown:

class task_context {
// returns the number of CPUs is the system(s)
int universe_size(void);
// returns this task's UUID
uuid get_agent_id(void);
// spawn sub tasks and form a task group
uuid launch_group(int num_processes);
// is the task with the given ID still “alive”
bool is_alive_task(uuid taskid);
// is there a pending message from the task with the

given ID
bool has_msg(uuid taskid)
// get this task's group id/index (when in a group)
int get_index(void);
// get the size of the group (when in a group)
int get_group_size(void);

99

Chapter 5: Design

// a barrier synchronization call, for a group
void barrier_group(void);
// wait until all others in my group terminate
void wait_group(void);

};

Data is actually sent and received via send_msg and recv_msg objects, which

take a context object as a parameter during their construction. These objects are outlined

in the next section.

Central to the messaging system in SAL is the concept of Universally Unique

Identifiers or UUIDs (sometimes known as GUIDs). UUIDs are 128-bit integer

identifiers that can be considered, for all practical purposes, to be “unique within all

keys in the universe.” More importantly, they need not be centrally generated or

managed, allowing for distributed systems to generate UUIDs without a central source,

yet still be reasonably confident that keys may intermix. These are analogous to PVM's

Task IDs (TIDs) in concept, but differ in implementation. In PVM, a PVM server

encodes its sequence ID within all the task IDs it generates, a sequence number it does

not know until the master server assigns it upon joining the virtual machine. Within

SAL, UUIDs may be generated at anytime.

UUIDs have wide appeal and are used in a variety of systems, from distributed

software systems to OS level services. The concept of universally unique identifiers that

can be generated in a distributed fashion is powerful and applicable to many domains

and problems. To generate these IDs, developers first employed the technique of

hashing various machine characteristics (such as a network machine address (MACs),

100

Chapter 5: Design

Internet address (IPs), etc.) and combined with a time stamp and a random number.

Over time, privacy concerns over the traceability of UUIDs containing MACs or IPs

lead to the use of strong random number generation facilities in many operating

systems. The operating system monitors a variety of random events in the system, such

as mouse movement or network noise to build an entropy pool from which strong

random numbers can be made.

In SAL, all objects such as agents and tasks have associated UUIDs. Tasks can

then publish and share this ID with other tasks or with the user. UUIDs in Scopira are

represented as small, convenient, opaque C++ objects that can be manipulated,

compared and stored, similar to primitive data types in the language.

Developers often launch a group of related instances simultaneously, and then

systematically partition the problem space for parallel processing. To support this

popular paradigm of development, SAL's identification system supports the concept of

groups. A group is simply a collection of N task instances where each instance has a

groupid∈[0,N-1]. The group concept is analogous to MPI's communicators (albeit

without support for complex topologies) and PVM's named groups. This sequential

numbering of task instances allows the developer to easily map problem work units to

tasks. Similar to how PVM's group facility supplements the TID concept, SAL groups

built upon the UUID system, as each task still retains – and may use – their underlying

UUID for identification.

101

Chapter 5: Design

5.2.3 Message Sending Objects

In SAL, the sending and receiving of data is done via dedicated send_msg and

recv_msg objects, which utilize the context interface to perform their work. It is these

objects that have a collection of writing and reading methods for sending data over the

network, not the context object itself. These objects reuse the underlying Scopira

serialization system, allowing the developer to reuse their object serialization code for

both SAL and for regular file I/O.

For example, the send_msg class itself does its specific work in its constructor

(setting up its destination) and destructor (actually sending the data). All the writing

method implementations are reused from Scopira, specifically the bin64oflow class,

which implements the method in the otflow interface. It is to this interface that object-

serialization code is written too. A selected, annotated API of send_msg follows:

class send_msg {
send_msg(task_context &ctx, int destination);
// destructor, does the transfer via RAII:
~send_msg();
// inherited type serialization methods
void write_bool(bool);
void write_char(char);
void write_short(short);
void write_int(int);
void write_size_t(size_t);
void write_int64_t(int64_t);
void write_long(long);
void write_float(float);
void write_double(double);
void write_string(const std::string &);
template <class T> void write_generic(const T &);
void write_bool(bool);
size_t write(const byte_t *, size_t);
size_t write_byte(byte_t);

102

Chapter 5: Design

template <class T>
size_t write_array(const T*, size_t);

size_t write_void(const void *, size_t);
}
Any object may be sent in a type-safe manner, from basic primitive variable types

to compound objects. Unlike MPI (and similar) message passing interfaces, this

decidedly object-oriented design provides send and receive functions that are usable at

any time, outside of any transactions. This design has various benefits:

● Serialization: Any data types or objects may be sent in a type-safe manner,

drastically reducing programmer errors. This reuses the powerful serialization

mechanism in Scopira (Section 4.1.2), enabling programmers to reuse their

serialization-compatible objects for other tasks.

● Packets: Data is transparently collected, grouped and sent in discrete packets,

which simplifies programming and debugging.

● Scoped transactions: Utilizing RAII (Section 3.4), packet sending and

receiving are done via dedicated code blocks. In particular, a send_msg object is

constructed at the start of the scope and then populated with data. When

execution leaves the dedicated scope block, the send_msg object's destructor is

called, triggering the actual sending of the message. This has all the typical

benefits of an RAII application: the user does not need to remember to call

explicit commit-like methods, and may exit the scope in a variety of ways (for

example, via a return or break statement).

These concepts are best illustrated with a short code example. The following

103

Chapter 5: Design

annotated code snippet demonstrates a simple task's run method that sends some data.

Figure 7 provides a visual illustration of the various objects and their interactions:

int my_task::run(task_context &ctx)
{

narray<double, 2> a_matrix; // a matrix of doubles

// the following is a messaging sending block
{

// construct the message object
send_msg M(ctx, 0);

// write a basic integer
M.write_int(100);
// write a whole object, in a type-safe manner
// no need to specify array length or type
a_matrix.save(M);

} // message is sent as execution leaves this scope

// at this point the data is sent and another message
// transaction can begin

}

5.2.4 Task Creation and Monitoring

Tasks may spawn or launch other tasks (Figure 8). In the basic case, one task is

spawned, which is useful for client-server pairings or when one task “calls” (and

expects an answer from) another task (or tasks) to perform a certain computation. As in

PVM, there is no rigid relationship between tasks, allowing this flexible mechanism to

be used to build a variety of systems. Finally, tasks in SAL are language-level objects,

requiring the creating task to specify the C++ class names of the new tasks. In PVM and

similar systems that model tasks around OS processes and applications, the caller would

have to specify file path names to actual programs, a value that would vary by OS and

by installation.

104

Chapter 5: Design

Figure 8: Example of nested task group spawning and communication

Groups of tasks may also be launched. A task group is simply a collection of task

instances of the same task type that can refer to each other via sequential IDs as well as

UUIDs. This permits the developer to use simpler notation when partitioning a problem

space into parallel processes.

In all cases, the context interface allows any task to monitor the lifetime of

another process. A task may also request that another task be interrupted and destroyed

– however SAL can only do this between a task's run calls as thread cancellation is

usually neither safe nor portable.

The task launching mechanism, combined with the scalable UUID-based

identification system, permits the construction of a variety of communication

topologies. For example, each task within a task group can also spawn its own group,

105

Chapter 5: Design

creating large processes hierarchies. Another situation includes coordinator-like

processes that can orchestrate a collection of groups and other processes, basically

facilitating disjoint tasks to perform a greater goal. Certain tasks may be persistent or

server-like, providing standard services, such as storage or random number generation,

to new tasks. All these options present a certain dynamic flexibility within the system,

where tasks live, die and spawn within the system, while being members of a global,

universally addressable messaging universe.

5.2.5 Messaging

The messaging system in SAL is built on both the generic Scopira I/O layer as

well as the UUID identification system. SAL employs a packet-based (similar to PVM)

message system, where the system only sends and routes complete messages, and not

the individual data primitives (as MPI can and often does) and objects within them.

Only after the sending task completes and commits a message is it processed by the

routing and delivery systems. The SAL agent uses OS threads to transport the data,

freeing the user's thread to continue to work. In contrast, MPI users that wish to utilize

overlapping IO require an implementation that specifically supports it, such as USFMPI

[22] (this can be somewhat emulated in standard MPI by using non-blocking functions).

The Scopira I/O system (from which the message system API is based) uses a

three level object-oriented system for data serialization (the process of converting

objects to a stream of bits).

106

Chapter 5: Design

At the bottom level of this system is the binary interface and its various

implementations. Fundamentally, this level has two types of implementations, “sinks”

or final stream terminators and binary filters. A sink begins (or ends) any stream chain

by taking the data out of or putting it into the stream system. Examples include files,

network sockets, and memory blocks. A filter simply converts one binary stream to

another, for example a cryptographic cypher, or a lossless data compressor.

The second interface level introduces the concepts of primitive types to the I/O

interface. This interface presents various methods for writing and reading a variety of

primitive types (such as integers and strings) and converting them into binary streams.

Implementations include an ASCII-representation converter (useful for debugging), a

compact binary converter and a binary converter that always stores data in 64-bit format

(useful for 32-bit and 64-bit interoperability).

The final interface level builds on the primitive type API and adds full object

serialization. This allows any object that implements the serialization interface to be

written to an I/O stream. The Scopira object serialization implementation includes

support for object-caching and reference bookkeeping, which allows objects that have

multiple references to be correctly serialized.

To send data packets with SAL, the task instantiates a send_msg object. The

sender provides the destination task(s) either by UUID, group index number, or a

broadcast flag. The send_msg message packet is then populated with data via its “type-

level” standard Scopira I/O interface. Finally, only when the message object is starting

107

Chapter 5: Design

the process of its destruction, are its contents sent to the routing system.

Sending (committing) the data during the send_msg object's destruction (that is,

via its destructor) was the result of an intentional design decision. In C++, stack objects

are destroyed as they exit scope. The user should therefore place a send_msg object in

its own set of scope-braces, which would constitute a sort of “send block”. All data

transmissions for the message would be done within that block, and the programmer can

then be assured that the message will be sent at the end of the scope block without

having to remember to do a manual send commit operation.

Similarly, the receiver uses a recv_msg object to receive, decode and parse a

message packet, all within a braced “receive block.”

Finally, the message system includes a complete recipient and polling API. The

programmer may specify a filter for incoming messages from a specific sender, any

task, any task within the same group, or a more complex specification using a basic

boolean logic based query expression. Recipients may also poll for messages rather than

block waiting for them, allowing for concurrent processing and error condition

checking.

5.2.6 Services

The SAL system permits users to build services: facilities that are provided by

persistent or long-running tasks within the system. SAL enables tasks to register

themselves as service providers and provides configurable searching facilities so that

108

Chapter 5: Design

other providers may be discovered. Services can provide any number of functions, such

as random number generation, centralized data set storage, task management services,

etc. Their persistence between client-task runs makes them useful for a variety of

domains. As tasks are lightweight processes (namely threads) rather than OS processes

(as they are in PVM), services such as a name server (which is built into PVM itself) are

implemented as service-providing tasks within SAL.

A task is said to provide some well known user-defined service if it supports that

service's messaging protocol. SAL may find service providers on behalf of a task, but

after the initial introduction, the initiator must then further probe the resulting tasks for

more specific information. Services are a protocol level contract rather than a new

interface or type and, as such, SAL itself cannot verify or enforce the completeness of

any task's service implementation.

5.3 Scheduling Engines

The SAL scheduling engines implements the SAL API. The engines are

responsible for task management, message transport and processor management. SAL

currently includes two types of engines, a “local” engine that uses operating system

threads on a single host machine and a “network” implementation that is able to utilize a

network of workstations. The network engine is a functional superset of the local

engine.

109

Chapter 5: Design

5.3.1 Local Engine

The “local” engine is a basic multi-threaded implementation of the SAL API that

is embedded completely within the user's application process (Figure 9). It uses the

operating system's threads to implement multiprocessing within the host application

process. The engine lacks the networking abilities to manage separate nodes and

intercommunication but is able to use all the processing cores on the host machine by

using operating system threads within the host process.

Figure 9: Embedded local-engine in a user application process

As this engine is contained within a single-process, it is the fastest to use for

application development and debugging. Using the local engine, the programmer may

fully design and test their parallel algorithm and its messaging logic before moving to a

multi-node deployment. Furthermore, as multi-processor and multi-core desktop

110

Chapter 5: Design

systems become more commonplace, this basic engine is perfectly suited for single-host

deployments and users who may not need full cluster resources. The local engine is

always available and requires no configuration from the user. Developers need not write

dedicated non-message passing versions of their algorithms simply to satisfy users that

may not want to go to the trouble of deploying a cluster.

The implementation of the local engine is relatively straightforward, as it is

contained within the host application process. The engine itself protects all the

administrative information in a mutually exclusively accessed area, protected by thread

“mutex” primitives. The engine maintains:

● A list of “worker” threads and their operating state;

● The next task to check for processing;

● A mapping of service UUIDs to tasks that implement specific services;

● A process table of tasks, indexed by their UUIDs. For each task, the engine

maintains the current running state, group peers (if any), and the incoming

message queue.

Task instantiation is straightforward. A new process entry is created and

associated with a task with a running state set to ready. The engine then adds new

worker threads to the thread pool, maintaining at least as many worker threads as active

tasks. Finally, the thread pool is notified, so that an idle worker thread selects and runs

the new task. The thread pool size is never reduced, only increased – this is done to

111

Chapter 5: Design

prevent resource intensive thread creation/destruction cycles. While for many process

communication patterns there may exist some optimal thread pool size that is less than

the number of active processes, finding this number is non-trivial, as the engine would

have to determine if blocked tasks are waiting for stopped tasks that require new work

threads. For example, as soon as any task waits for a message from another task, the

engine quickly deteriorates into the worst case: as many threads as active tasks.

Message routing is straightforward and similar to PVM. The engine wraps a small

message header object around the sender's data packet and appends this directly to the

destination task(s) event queue. Each event queue is itself protected by a thread mutex

and notification condition object, so that the waiting task may immediately process the

new data without a chance of thread conflicts (i.e. race condition). Each message header

object treats its data payload in a read-only manner. This allows the various destination

tasks for a broadcast message to share one copy of the data payload, greatly reducing

memory duplication.

The local engine does no load balancing. As the engine provides as many worker

threads as active tasks, it relies on the operating system's ability to manage threads

within the processors. This works quite well, when the number of tasks instantiated into

the system is a function of the number of physical processors, as encouraged by the API

(via reasonable defaults). Since there is only one primary user/initiator in a local engine

(that is, the host application's user), the number of task groups in the system is

predictable (often, one).

112

Chapter 5: Design

In summary, I found the implementation of the local engine to be relativity

straightforward. Without the complexities of network communication, the engine

implementation itself is simply a collection of shared associative arrays with various

levels of mutexes and conditions all shared by a group of worker operating system

threads. This makes for a reasonable reference implementation of the API, useful for

both debugging and for production deployments where the user's desktop machine is of

sufficient processing power.

5.3.2 Network Engine

The network engine implements the SAL API over a collection of machines

connected by an IP-based network; typically Ethernet. The cluster can be a dedicated

compute cluster, a collection of user workstations, or a combination. The engine itself

provides inter-node routing and management, leaving the local scheduling decisions

within each node up to a local-engine derived manager. The network engine is a

functional superset of the local engine, and uses the same local engine scheduling at the

single host level.

The network engine implementation is a functional superset of the local engine.

That is, the network engine also manages multiple tasks on a single host using operating

system threads and basic message queuing. A single-host network deployment is

functionally similar to a local engine deployment.

113

Chapter 5: Design

5.3.2.1 Topology

A SAL network stack has two layers (Figure 10). The agent transport layer

contains the agents themselves (objects that manage all the tasks and administration on

a single process) and their TCP/IP based links. The agents virtualize and present the

messaging layer, where tasks can send messages to each other using their UUIDs,

ignorant of the IP layer or the connection topology of the agents themselves. For

simplicity and efficiency, a SAL network (like PVM) has a master agent residing on one

process. This master agent, in addition to participating in compute activities, is

responsible for the allocation, tracking and bookkeeping of all the tasks in the system. It

is assumed that within a single site deployment of an SAL network, at least one stable

server (i.e. non-user desktop) machine can be found to assume this role. This master

role need not be deliberately assigned by the user – the first network based agent will

automatically assume this role if no other master agent is found. A centralized master

allows for simpler and faster task administration.

The network engine uses a combination of URL-like direct addressing and

UDP/IP broadcast based auto-discovery in building the agent network. The simplest

sequence is to start an application in auto discovery mode. When a network engine

starts, it searches the local network for any other agent peers and, if found, joins their

network. If no peers are found, then it starts a network consisting of itself as the only

member and assumes the master agent role. Users may also specify the master's URL

directly, connecting them explicitly to a particular network.

114

Chapter 5: Design

Figure 10: The SAL Network Stack

The Scopira package includes a SAL shell application that can be used in more

specialized deployments. This application simply loads any external application

modules and proceeds to join or create a SAL network. It is intended for system

administrators and users who want to launch worker processes to which the desktop

applications connect.

Agents within the system utilize two different routing policies as needed: fully

connected agents that perform direct-routing and agents that proxy all their

communication via a master agent. The former are usually dedicated compute nodes,

which can be considered relatively stable and network connected, and would benefit

115

Chapter 5: Design

from increased speed and reduced latency by direct TCP/IP communication with other

peers. The latter type – agents that communicate via the master – are more for nodes

that are “unreliable” (worker agents deployed on user desktops, for example) or for

desktop applications and graphical front ends that do not need the superior performance

of direct communication. Routing through the master also permits communication when

firewall or network issues (such as the cluster nodes being on their own private

network) would otherwise limit communication.

The master agent is critical for message routing within the network. First, the

master tracks the physical location of all the other agents within the system.

Specifically, it is able to map an agent's UUID to their TCP/IP addresses, which is

required for peers to do direct peer-to-peer routing. Finally, the master does proxy

routing for agent nodes that are not doing direct routing. This design makes routing

straightforward in the agent network, as all messages are sent directly to the peer or

directly to the master agent (to which all agents always have a direction connection).

These flexible routing and deployment options permit a variety of different

network topologies. Figure 11 contains a montage showing four types of routing

topologies: dedicated compute cluster, desktops as cluster clients, ad-hoc desktop

cluster and volunteer (idle time) computing.

The traditional compute cluster topology (Figure 11 (a)) has a collection of

dedicated compute hosts (usually on a dedicated network switch or possibly other

specialized communication hardware) directly connected for optimal performance.

116

Chapter 5: Design

Users connect to the cluster directly to submit and monitor running jobs.

A more seamless connection method involves users running SAL-based desktop

applications (Figure 11 (b)) on their desktop hosts that automatically find and connect to

an already running cluster master agent. The user's agent submits jobs to the master for

computation, who then assigns sub-jobs to work nodes within its cluster. The user's

agent itself usually does not do any computational work (and definitely not the work of

other users who may also be connected to the same master agent) but simply monitors

and retrieves results of running jobs. Finally, the user agent may disconnect from a

running network and reconnect later, making long running jobs independent of the

reliability of desktop clients.

Desktop users can also form their own ad-hoc compute cluster (Figure 11 (c)) by

simply starting their SAL-enabled desktop applications. This is useful, for example, if

the users lack the hardware resources for a dedicated compute cluster, lack the know-

how or are mobile users. The first application instance will, upon not finding any other

instances, start a new agent network with itself as the master. Subsequent application

instances will connect to this master, building up the ad-hoc compute network. The

users may now run jobs from their applications that will automatically be deployed on

this ad-hoc cluster.

The ad-hoc desktop and dedicated cluster topologies are similar, in that all the

nodes are (logically) interconnected. However, in practice, the ad-hoc cluster may be

more dispersed, with many intermediate routers and switches separating the instances.

117

Chapter 5: Design

Volunteer-based computing (Figure 11 (d)) uses the idle processing time on

desktop (and other hosts) at a site to perform computation work. A SAL-enabled

application would be installed (either by the user, or site-wide by a system

administrator) to run at start-up with a low scheduling priority (so as to not interfere

with the host's regular duties). The application would find and connect to the local

dedicated master and begin requesting and processing work. This topology effectively

gives a site free computing resources, as it harnesses otherwise wasted processor cycles.

Figure 11: A sample of possible network deployment topologies

Finally, the same SAL-enabled application may be run in all these topologies

giving the end-user flexibility in deciding how they would like to deploy their

118

Chapter 5: Design

processing tasks. The topologies can also be combined, further adding to deployment

options.

5.3.2.1 Task Management

In addition to its critical routing functions, the master agent is also responsible for

all the task tracking and management within the network. By centralizing this

information, load and resource allocation decisions can be made instantly and

decisively.

For each agent peer, the master tracks its load, routing policy (direct or indirect)

and task running policy. Specifically, each agent is able to specify what types of jobs it

is willing to accept: all jobs, no jobs (useful for desktop nodes or front end nodes) or

only self-initiated jobs (for agents that are present only for their own jobs).

For each task, the master tracks its network location (on which agent it resides)

and its running state. The master gives this information to slave agents on demand, as it

is required for direct message routing. The slaves then cache the location information,

greatly reducing unnecessary redundant requests while occasionally flushing or

updating their caches as needed. The master's records are definitive and always reflect

the real state of the network.

All task instantiation requests are handled by the master agent. When a task within

an agent requests the creation of more tasks, the request is routed by the hosting agent to

the master agent. Based on the current loads and hosting policies of the various non-

master agents, the master relays the request to the chosen agents. The agents then create

119

Chapter 5: Design

the actual tasks, report back to the master, which in turn reports back to the initiating

task's agent and task.

The master agents use the number of active tasks on each agent as the primary

metric of processor load. This tactic is sufficient for most scenarios; however for more

compute loaded systems (that is, systems with other programs and users), a more

sophisticated allocation policy will be required. In particular, examining the operating

system reported system load may give a better picture of the load of the machine. Of

course, the agents would then be susceptible to the operating system's metrics, its

variances and any reporting anomalies, but it would factor in other applications running

on the machine, as well as appropriately rate threads and processes that are not

processor bound (as opposed to disk or network bound).

5.4 Sample Services

Services or service tasks within SAL are tasks that provide well known functions

and services to other tasks. These services are typically persistent (much like a server

process in an operating system) and wait patiently to process requests from client tasks.

They may be started at network boot time or demand-loaded as needed. The tasks

themselves receive no special treatment nor use any special APIs; they are normal tasks

within the agent system. An agent is defined by the services it provides via a well

known and published messaging protocol. Service providers may be application-

specific or general utility function providers.

120

Chapter 5: Design

Service providers may play a variety of roles. A monitor service allows tasks to

register themselves as monitors of other task(s), either being notified or perhaps killed

when the watched tasks terminates. This service forms the basis for fault tolerant

computing, providing cleanup services for when key tasks within a job abruptly

terminate. An administration service can provide the basic functionality needed for

general system monitoring and administration. Client tasks can perform automated,

routine maintenance as well as present this information to the user, both graphically and

in a report. A job manager service (where “job” refers to a collection of cooperative

tasks) is used to track user-visible jobs in the system. This allows a user to “detach” or

disconnect their client application from the agent system and leave their jobs running

unattended. Upon return, the user is presented with a list of jobs (and their completion

states). The user then resumes interacting with a selected job. Specific devices,

instruments, and license-limited software can be accessed through a representative

service. This allows a unique resource to be protected and managed by a sole process, to

whom all tasks must submit requests. For specific applications, pseudo-random number

generation may also be centralized. This allows job reproducibility (critical for

algorithm testing, development and scientific publishing), as a distributed set of tasks

must still contact a single, managing source for their random number sequences. Finally,

a file or data set service may provide centralized access to data files. This may be done

for ease of use (consolidation of all the files into one name space), access control or

simply because the files are only available at fixed agents/hosts (this is particularly

121

Chapter 5: Design

useful for cluster configurations without a shared file system). Arbitrary user

authentication and access control may also be implemented to further refine the files

available to a particular task or job set.

5.5 Deployment

SAL is designed to allow developers to make parallel applications that require no

special configuration from end users. This is vital to the goal of making parallel

applications easy to use. This is achieved using a variety of techniques. First, the

complete messaging and routing engine is included in the programming library itself,

and is thereby embedded in the application. Users do not need to install and configure

additional framework or infrastructure software. Users without cluster resources can

still use the always-available local engine, which provides parallelization through

operating system threads. This vastly increases an application's potential user base by

lowering the requirements to install and run the software, specifically, the need for

cluster hardware and software.

SAL-based applications may be configured (by the user or their system

administrator) to automatically seek out other agent peers on the local network. If other

peers are found, then the agent will automatically join the existing network. If none is

found, then the user's desktop can either start its own network (with itself as the only

member) or proceed to use the local engine. This is useful when dedicated compute

resources are unavailable or network access is inconsistent – particularly useful to

122

Chapter 5: Design

laptop users and for smaller institutions with less information technology resources.

The SAL networks themselves may be formed in an ad-hoc manner by the user's

desktop application instances, via auto network discovery. System administrators or

users may setup stable agents on dedicated, always-available hardware providing a pool

of reliable compute resources to all SAL-driven applications within a site.

Finally, Scopira and SAL are multi-platform. Primary platforms include Microsoft

Windows and Linux, with Apple's OS X and various UNIX operating systems as

secondary platforms. Users now no longer need to bother with learning how to access

and use the local Linux-driven computer cluster, but can instead run their Windows

based desktop application, which will seamlessly communicate with the cluster and

other peer nodes. This is possible as SAL is designed to be a multi-platform library

suitable for developing applications on all the major desktop platforms. The network

and object-serialization layers in SAL (inherited from Scopira) take care to specify data

type sizes and byte-order, permitting data messages to be transferred between nodes of

differing processors and operating systems.

123

Chapter 6: Experiments

6 Experiments

6.1 Introduction

This chapter presents the experimental design for testing the performance,

usability and application integration of SAL. Through a variety of metrics, these

experiments will gauge the Scopira Agents Library (SAL) along three major axes:

● Performance: how fast are SAL applications. A set of metrics will be used to

objectively quantify the communication and management overhead a SAL-built

(compared to other offerings) application will incur.

● Usability: how easy it is to develop a parallel application using SAL, compared

to other offerings. A set of metrics will be used to correlate the overall ease-of-

124

Chapter 6: Experiments

use, amount of work and debugging time a programmer will experience when

using the library. In addition to these objective metrics, several subjective case

studies will be presented to evaluate difficult-to-quantify benefits.

● Application Integration: how easy is it to integrate SAL into a stand-alone

application that could be used by non-technical users. Embedding SAL into

desktop applications shares the performance benefits of parallel computing with

groups of users that may have lacked the programming or technical background

that may be necessary to run parallel algorithm implemented with more

established libraries. Subjective measures and anecdotal use-cases will be used,

as such benefits are difficult to quantify.

If the design and implementation goals of SAL are successful, these experiments

should show that SAL is more usable than comparable libraries with sufficient

performance in its targeted use cases. SAL will be shown to integrate into stand-alone

applications, usable by non-technical users. The SAL will be somewhat less efficient in

more demanding configurations but for its intended configuration it should provide

acceptable performance (negligible differences in overhead) compared with the leading

message passing libraries. Recall that, by design, SAL sacrifices some performance for

usability.

125

Chapter 6: Experiments

6.1.1 Setup

6.1.1.1 Compared Libraries

The experiments will compare SAL-created programs to:

● Uniprocessor: a standard, non-parallel implementation. This version is a basic,

non-parallel version that is free of any communication or setup code. This

version gives the optimal performance on one processor and is the baseline for

all other comparisons.

● Threaded: a single-machine, preemptive threaded version, using POSIX

Threads. This version cannot scale past the processors in a single host. However,

utilizing its shared memory architecture, it is expected to be the fastest (have the

least overhead) for single host cases.

● MPI (Messaging Passing Interface): a version created using an open-source

MPI implementation (such as LAM [20] or MPICH [42]) library, which

conforms to the MPI specification. This API is the current standard library for

writing parallel programs. This version will be tested in all cases, both multi-

process with a single host and with multiple networked hosts. The standard C

version of MPI will be used, rather than the lesser used C++ version. The

C++ version adds little in the use of object-oriented or generic programming

styles to the MPI API, and keeps the same overall style of communication

functions as those in the C version.

126

Chapter 6: Experiments

● PVM (Parallel Virtual Machine): a networked version using the established

PVM library. This version will be tested in all cases, both multi-process with a

single host and with multiple networked hosts.

The core of the experiments will be the comparisons with MPI and PVM, as these

libraries (MPI more so) are the leading message passing libraries for parallel computing.

The uni-process and threaded cases provide ideal performance baselines.

6.1.1.2 Test Programs

Two basic algorithms will be developed for the tests:

● Boss-worker Random Search: This algorithm implements a rudimentary

version of Stochastic Feature Selection (SFS) [80], a feature-reduction strategy

that aids in the classification of biomedical data sets. This “embarrassingly

parallel” algorithm lends itself to the boss-worker organization model (Figure 1

(a)). The workers request the data set and initialization information from the

boss, perform the required amount of work, and submit their results on

completion. There is no communication between workers, leading to less

demand on the communication hardware and software. The organizational

model has built-in load balancing: faster workers will simply do more tasks and

will not be held up by slower workers.

● Peer to peer Conway's Game of Life: This algorithm implements Conway's

Game of Life, a classic, deterministic cellular automaton played out on a two-

127

Chapter 6: Experiments

dimensional matrix. Each iteration of the algorithm produces a new matrix based

entirely on the previous one. This task is implemented in a peer to peer fashion

(Figure 1 (b)), where each peer processes a subset of the matrix and exchanges

border information with its neighbors. This lock-step algorithm is somewhat

communication intensive, as is common in many image processing algorithms,

and will serve as a more rigorous test of the communication performance of the

various libraries.

These two test programs will compare how the libraries handle two different

parallel program organizational models with different communication requirements.

A pseudo-code outline of the algorithms is provided in Appendix A: Algorithm

Pseudo-Code, while the full source code is available in electronic form (Appendix B:

Electronic Files).

6.1.1.3 Test Hardware

The following hardware will be used:

● “Single-Node,” One 8 Core Node: For the single-node tests, an eight core (via

two four-core Intel Xeon processors) machine running Linux, will be used.

● “Multi-Node,” Fourteen 2 Core Nodes: For the cluster/networked hosts tests a

cluster of 14 nodes, each with two AMD Opteron processors each running

Linux, will be used. The nodes will be connected via a standard, but dedicated,

gigabit Ethernet switch.

128

Chapter 6: Experiments

These two configurations will test single-node and multi-node parallel scalability,

showing the effects of network transmission overhead on performance.

6.2 Assessing Performance

Performance of the libraries will be assessed by submitting the programs to

various tests. The work loads will be of fixed size, sufficient to return measurable

timing results. The tests will vary the number of processors to give insight into the

scalability of each program and library combination. All performance results will be

normalized to work done per processor, for easy comparisons.

There will be five implementations (one for each library) of each of the two

programs, for a total of ten programs. Each of these programs will be submitted to the

following two sets of tests (corresponding to the two hardware configurations):

● Single-node: Runs with processors P=1, 2, 4 and 8 will be performed on the

single-node. This will test processor scalability without network overhead.

● Multi-node: Runs with processors P=1, 4, 8, 16 and 24 will be performed on

the multi-node cluster. For each run, N=P/2 nodes will be used, as each node

contains two processors. This will test scalability with network overhead.

Note that the uniprocessor programs will only be run with P=1, while the threaded

programs will only be run under the single-node hardware configuration.

129

Chapter 6: Experiments

6.2.1 Performance Comparisons

Given the variables that can be adjusted in these experiments, it is important to

frame and classify the experiments, along their various dimensions such that meaningful

conclusions can be made.

At the core of these experiments, we will compare the performance (work units

completed per second) of the libraries against each other. To assess the scalability of the

libraries, we will sample their performance over a range of P, the number of processors

used. We can then compare the normalized per processor performance (work units

completed per second, per processor) over the various libraries. This will be considered

a run. Because the performance metrics are normalized per processor, a run will also

highlight the overall efficiency of a library: its ability to scale (ideally, linearly) overall

performance with the number of processors.

For the peer-to-peer job type, multiple runs will be performed over various job

sizes. This highlights the effects job size has over communication characteristics and

thus overall performance. Finally, comparisons will be made between the runs on the

single-node computer and a multi-node cluster. This gauges the effect that a real

network has on communication latencies and thus overall performance. General

comparisons will be between the two algorithms, illustrating the effects of

organizational models on performance.

130

Chapter 6: Experiments

6.3 Assessing Usability

Blind, focus group-like testing methodology was considered. In such testing,

groups of programmers would be subjected to implementing programs in the various

libraries. The programmers would implement various algorithms using the libraries and

after, attempt to objectively score the usability of all the various libraries in a survey.

This method has many drawbacks. Cost and time would be a factor in running all the

developer focus groups. There would be a heavy bias for some programmers, especially

for libraries they may have seen or used. Documentation and the general availability of

program samples would also favour some libraries over others. Finally, the inexperience

of some programmers either with the programming language, the algorithms, or parallel

program design and implementation may further obscure the results.

Rather, a more objective method (inspired by [83]) was desired and will be used.

The experiment will take the programs written by the author and compares them

objectively, using the methods described below. The author is experienced with all the

libraries, the C++ programming language and parallel program decomposition and

design. All attempts will be made to write the best, safest and most concise programs

afforded by each respective library.

Each program type group (boss-worker and peer to peer) will have five different

implementations, one for each library. The programs will be compared within their

group.

Each program will be divided into the following categories:

131

Chapter 6: Experiments

● Boot strap code: This code is part of the standard infrastructure code to start

and shutdown the program. This code includes the C++ entry point, any library

start and stop code, as well as any data file loading and algorithm initialization.

This code is relatively constant (with respect to program complexity).

Differences between this type of code among the libraries can mostly be

ignored, as it is usually not a concern for developers, given its trivial nature.

This type of code will not be included in the analysis.

● Algorithm code: this is algorithm code that does not include any parallel

constructs or communication commands. It is specific to the algorithm and is

common to all versions of the program. For the most part, it is the same for all

program versions, and any differences will be slight and negligible. This type of

code will not be included in the analysis.

● Communication code: this is the core communication code that is responsible

for packaging and exchanging data between processors. This code varies

significantly between libraries, and as such, will be scrutinized and compared.

For communication code segments, the following objective metrics will be used:

● LOC: Lines of code (LOC) measures the number of code lines (ignoring

comments and blank lines) in the program. This will give a rough estimate of the

size (and usually the complexity) of a segment of code.

● Tokens: The token count measures the number of language tokens in a segment

132

Chapter 6: Experiments

of code. Language tokens include variables, reserved words, operators, and

string literals. Comments will be ignored. Longer lines of code will be detected

and penalized by this measure, usually a signal of complex code. This metric is

preferable to character-lengths of lines as it ignores whitespace and variances in

identifier lengths, which usually are not considered contributors to code

complexity.

● Average Tokens per LOC: The average number of tokens per line of code will

give an idea to the average complexity (in terms of length) of a line of code.

● Dangerous-Operators: “Dangerous” operators will be counted. Dangerous

operators are functions or operations that the library makes the developer use,

but cannot be checked at compile time. Mistakes committed during the use of a

dangerous operator result in subtle and difficult to debug run time errors or

erroneous output.

The following dangerous operators will be counted:

○ Use of pointers: any operation that uses pointers or pointer arithmetic.

Pointer operations are dangerous as they are subtle in their use, unchecked

by the compiler and could easily corrupt or crash a running program.

○ Type casting: using any C++ cast operator. C++ strives for proper type

consistency and safety. Using a cast operator usually means the programmer

wants (or needs to, because of a library deficiency) to override the system,

ignoring the checks provided by the compiler.

133

Chapter 6: Experiments

○ Type specification: occurs when the user needs to explicitly state the type of

a parameter. This forces the developer to repeat information, and since this

information is not checked at compile time, an error could lead to runtime

errors. This is a particular problem when the actual type and stated type can

easily change, such as when switching platforms or if the object type is

specified in another compilation unit, away from the communication code.

○ Element counting: occurs when the user needs to explicitly state the size of

structures or elements. This duplication (again, not checked at runtime) is

error prone and could easily cause buffer overruns.

● Extra functions: Extra operators are function calls that perform cleanup or

other required maintenance functions. These types of operators are pure-

maintenance (overhead) code required by the programmer – they never add

functionality to the program or algorithm. The programmer must remember to

always use them as required, as they are not checked by the compiler. Failure to

include these operators at best, “leak” or waste resources (such as memory), or

at worst, cause run-time errors.

6.4 Assessing Application Integration

To analyze how well SAL integrates with a desktop application, a test application

will be built, and several test scenarios will be run. The results will be subjectively

analyzed from a user's point of view.

134

Chapter 6: Experiments

The existing boss-worker algorithm code will be built into an interactive graphical

desktop application. This application will be run on three platforms (Microsoft

Windows, Apple Mac OS/X, and Ubuntu/Fedora Linux). To emulate possible uses of a

SAL-enable application, these test applications will be run in three scenarios:

● To show how SAL provides no-worse than threading utility, the three

applications will be run independently on their respective platforms, using only

the processors in their host workstation.

● To show how the automatic cluster group features could be useful in small

deployments, the three applications will pool their processing power and form a

small group network. This is an example of desktop ad-hoc cluster computing,

as noted in the SAL design chapter (Figure 11 (c)).

● Finally, to show how non-technical users could automatically utilize the

resources of a Linux cluster, the Windows client will be connected to a cluster.

This is an example of desktop workstations as cluster clients, as noted in the

SAL design chapter (Figure 11 (b)).

135

Chapter 7: Results and Discussion

7 Results and Discussion

7.1 Introduction

This chapter presents my experimental results with analysis and concluding

discussion. Appendix C: Experiment Protocol describes the experiment process in

detail.

7.2 Results: Performance

An objective analysis of the performance of the various libraries is presented here.

The performance results (per processor, normalized to the uniprocessor implementation)

was compiled and presented as eight plots. Two plots were produced for the boss-

worker program type (one per single-node and multi-node hardware types). Six plots

were produced for the peer-to-peer program type (three job sizes for each of the two

136

Chapter 7: Results and Discussion

hardware types). Each graph plots all the various implementations and their efficiency

over the number of cores, showing how the implementations scales with processing

power availability.. The graphs show the differences between the libraries with respect

to performance and scalability. Optimal scalability was shown with a value of 1.0 (“as

good as the non-parallel version, per processor”). Comparing to the efficiency of the

optimal case provides a sense of the overhead incurred by the libraries.

7.2.1 Boss-worker

Overall, Figure 12 shows that all libraries have near ideal efficiency over all

numbers of processors, P, in the single-node experiment. In fact, due to the

embarrassingly parallel nature of the boss-worker algorithm, most differences between

implementations can be attributed to timing errors and perhaps contention with other

processes on the test system. The SAL and threads implementation seemed to show an

even more level scalability growth, but with PVM attaining near optimal efficiency for

P=8, a definite difference could not be concluded.

The glaring exception to this is the MPI implementation for P=8, with an

efficiency rate of about 0.88. MPI's aggressive message polling scheme (see Section

7.2.3 for in-depth analysis of this feature) is the cause of this inefficiency. The normally

idle boss thread is turned into a processor-bound thread that competes and takes away

processing power from the actual worker threads. This leaves nine (eight workers and

one boss process) to contend over the eight processing cores in the test machine

137

Chapter 7: Results and Discussion

resulting in suboptimal efficiency. The optimal efficiency of such a setup is 8/9=0.89,

which is about what the MPI implementation reports at P=8.

1 2 4 6 8

0.85

0.9

0.95

1

1.05

Boss-worker Efficiency (Single-node)

SAL
PVM
MPI
Threads

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 12: Boss-worker library efficiency on an SMP computer

Overall and unsurprisingly, all libraries performed nearly optimally for this

algorithm across all P.

In the multi-node case (Figure 13), all boss-worker implementations effectively

have an efficiency near 1.0 for all P. This is unsurprising, as the algorithm, by

definition, is embarrassingly parallel. Interestingly, for many cases, the MPI

implementation seems to have super-efficient (greater than 1.0 efficiency). However,

this difference is so slight, that it may be explained by timing errors.

Due to the embarrassingly parallel nature of this algorithm, one expected that

138

Chapter 7: Results and Discussion

efficiency will be near 1.0 for any value of P. This makes this algorithm a good

candidate for volunteer computing other large scale deployments.

1 2 4 8 12 16 20

0.97

0.98

0.99

1

1.01

1.02

Boss-worker Efficiency (Multi-node)

SAL
PVM
MPI

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 13: Boss-worker library efficiency on a network cluster

In conclusion, we can see that SAL is no worse than any other libraries for an

embarrassingly parallel algorithm such as our sample boss-work instance. For such

algorithms, SAL can be used with confidence as it does not provide undue

communication overhead.

7.2.2 Peer-to-peer

In the pass-to-peer case (Figure 14), the experiment ran on a single-node with

image size N=1. This is the smallest tested image size and results in the highest

communication frequency as it has the lowest per-iteration computation requirements.

This high frequency tests the libraries the most, bringing their weaknesses to light.

139

Chapter 7: Results and Discussion

1 2 4 6 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Peer-to-peer Efficiency (Single-node, N=1)

SAL
PVM
MPI
Threads

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 14: Peer-to-peer library efficiency on an SMP computer (N=1)

From the plot we can see that the threads and SAL implementations have roughly

comparable and reasonably scalable (to 8 processors) results for all number of

processors P. This demonstrates the speed of SAL's shared memory implementation in

single-node configurations. In contrast, PVM's efficiency drops off significantly

resulting in poor scalability with increasing P.

MPI, despite being a multi-process/message passing library (with all the assumed

overheads that this entails) has superior performance to the shared memory

implementations (SAL and threads). However, for the last P=8 case, the performance of

MPI drops off significantly, due to its aggressive message polling feature (Section

7.2.3). This weakness hinders the performance of the MPI implementation for all the

single-node runs. This limits MPI's ability to efficiently use all the processors on a

140

Chapter 7: Results and Discussion

single-node deployment (which would be one of the simplest and most popular cases of

parallel algorithm deployment) unless developers and users utilize the proper work-

arounds.

The next experiment (Figure 15) increases the image (job) size by 10, resulting in

more (work) processing time per iteration and thus less inter-peer communication. Less

communication results in less dependence on the communication libraries, reducing

their effect on overall performance. This is clearly evident in the plot as scalability and

efficiency for all the libraries are more or less identical.

Finally, increasing the image size to N=100 removes any visible differences

(Figure 16) between the libraries as the worker peers spend most of their time working

on the image, rather than doing inter-peer communication.

1 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Peer-to-peer Efficiency (Single-node, N=10)

SAL
PVM
MPI
Threads

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 15: Peer-to-peer library efficiency on an SMP computer (N=10)

141

Chapter 7: Results and Discussion

1 2 4 6 8

0.5

0.6

0.7

0.8

0.9

1

1.1

Peer-to-peer Efficiency (Single-node, N=100)

SAL
PVM
MPI
Threads

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 16: Peer-to-peer library efficiency on an SMP computer (N=100)

In the multi-node case (Figure 17), a cluster of machines connected by a network

is used to test the communication overhead of the various libraries. The network is

expected to introduce noticeable overhead compared to the single-node case, making

the introduced latency and overhead of the communication libraries more important in

the overall performance of the algorithm.

PVM and SAL have comparable degradation curves, with PVM having a

consistent efficiency advantage for mid-range P values.

At P=8, MPI had a curious dip in its efficiency curve. This could not be

conclusively explained, but one possible explanation could be attributed to some kind of

process deployment inefficiency (Section 7.2.3) for this particular algorithm. For the

most part though, MPI has the best performance especially at the highest processor

counts (P=16,20). Optimization-centric features in the MPI library seem to have

positive results on performance.

142

Chapter 7: Results and Discussion

1 2 4 8 12 16 20

0

0.2

0.4

0.6

0.8

1

1.2

Peer-to-peer Efficiency (Multi-node, N=1)

SAL
PVM
MPI

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 17: Peer-to-peer library efficiency on a network cluster (N=1)

The overall work performance (work being defined as W=EP, where E is

efficiency and P is the number of processors) of all implementation peaks before

reaching P=20. That is, utilizing additional processors after the peak actually has a

detrimental effect on overall performance. MPI has the best overall work performance,

peaking at P=12 with W=0.64(12)=7.68. SAL and PVM both peak at P=8, with

performance rates of 0.47(8)=3.76 and 0.73(8)=5.84 respectively. MPI, through its

aggressive communication latency optimizations, is able to squeeze more absolute work

performance out of this configuration utilizing more processors in the process.

As the image size increases, overall scalability of all the implementations

increases (Figure 18) resulting in performance peaking at larger P values. PVM seems

to have the best efficiency for P=4,8, but MPI overtakes it for large P while SAL attains

143

Chapter 7: Results and Discussion

roughly comparable efficiency to PVM for large P.

1 2 4 8 12 16 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Peer-to-peer Efficiency (Multi-node, N=10)

SAL
PVM
MPI

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 18: Peer-to-peer library efficiency on a network cluster (N=10)

Finally, for large image size N=100 (Figure 19), communication is so infrequent

(usually about 10 messages per second) that the messaging overhead differences

between the message passing libraries has little effect on overall efficiency. SAL and

PVM have comparable efficiencies, while MPI, overall, is the most efficient.

For all image sizes of N however, one expects that the efficiency of the peer-to-

peer algorithm will continue to drop as P increases, until it reaches nearly 0. The ratio

of communication-to-work increases with P, and will eventually cause the system to

spend most of its time performing communication operations rather than compute work.

144

Chapter 7: Results and Discussion

1 2 4 8 12 16 20

0.6

0.7

0.8

0.9

1

1.1

Peer-to-peer Efficiency (Multi-node, N=100)

SAL
PVM
MPI

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 19: Peer-to-peer library efficiency on a network cluster (N=100)

In conclusion, for this more communication intensive peer-to-peer algorithm, we

find that SAL is an adequate solution with respectable performance. For single-node

cases, SAL is vastly superior to PVM, giving thread-like performance via its shared

memory architecture. For multi-node, communication-intensive configurations, SAL is

last but trails closely behind PVM in overall performance. As the communication

sensitivity reduces due to larger data set sizes between communication events, the

differences become less apparent. Except for the full-processor/single-node case where

it has quirks (attributed to its aggressive message polling), MPI, as expected (due its

focus on performance), tends to be the best overall in multi-node configurations.

145

Chapter 7: Results and Discussion

7.2.3 MPI Performance Notes

Several notable characteristics of MPI surfaced while developing the MPI

implementations of the algorithms. There are various features that MPI has

implemented to permit optimized communication performance for large algorithm

deployment with experienced developers. These features all come with trade-offs that

can actually confuse or hinder the development of smaller, simpler parallel algorithm

deployments. Some of these aspects may be in all MPI applications or just specific to

the particular implementation used (LAM 7.1.1 running under Linux).

MPI assumes synchronous communication with fixed buffer sizes. This could lead

to subtle bugs for developers that are not aware of these implementation details. MPI

uses internal buffers (or perhaps the buffers of the communication protocols directly) in

sending messages. When a developer requests to send data that exceeds this buffer, the

send call is blocked (paused) until the receiver consumes the message. Certain job

configurations, for example those that do interleaved communication (common in peer-

to-peer configurations) or for when a node communicates with itself (handy for when

there is only one worker node and processor) will become dead locked. These dead

locks may not manifest themselves until the data sizes exceed the buffer sizes, making

them harder to debug and understand. Developers must therefore understand these

limitations when implementing their algorithms. MPI provides specific non-blocking,

but more complex, data sending routines that can be used to alleviate problems in

certain cases.

146

Chapter 7: Results and Discussion

MPI's default behaviour prefers to spread out nodes over the cluster, rather than

clustering them on individual SMP machines. This scheme has its benefits and trade

offs, one of which is increased communication latency for processor bound work loads,

hindering performance. MPI offers the end-user many options when configuring the

size of their MPI cluster and its allocation strategy. The end-user must be aware of these

options and trade offs when deploying their algorithms. Occasionally, the user may have

to experiment with various options to find the optimal setup. Although these options are

powerful and needed to cover all the potential high-performance use-cases of MPI, they

may be a burden to the casual parallel computing user.

Finally, MPI often does “aggressive message polling.” Rather than wait for the

operating system to signal and wake up a process that is waiting for a message, the

process aggressively polls the operating system for the message in a loop. Although this

decreases latency for processes that can expect data in the near future, it wastes

processor cycles that may be usable by other users on a shared system. Furthermore, in

certain program organization models, such as boss-worker, the boss, by design, spends

most of its time in a message-wait loop. Under this scheme the boss process now

unnecessarily consumes a full processing core, which could have been used by workers

and other users.

7.3 Results: Usability

For an objective assessment of programmer usability, the code counts of the

147

Chapter 7: Results and Discussion

sample program's communication code segments are presented and compared. The

uniprocessor counts are listed for completeness. As the uniprocessor by definition does

no communication, they have no communication code to be counted and thus contain

all-zero counts.

The tables contain the following headings:

● LOC: lines of code.

● TOK: number of tokens.

● ATL: Average tokens per line of code.

● POP: Number of pointer operations.

● COP: Number of cast operations.

● ETS: Number of explicit type specifications.

● EEC: Number of explicit element counts.

● EFC: Number of extra function calls.

7.3.1 Boss-worker Usability Results and Discussion

Table 1 shows the analytical break down of the communication code in the

various boss-worker algorithm implementations. The threaded version of the algorithm

contained a surprising amount of code. Despite not needing data communication code

(i.e. code to encode the data objects to the communication layer), a notable amount of

code was required to setup and synchronize access to the shared variables between the

threads. The standard POSIX Threading API [21] was used, which required not only the

148

Chapter 7: Results and Discussion

use of pointer operations but also many explicit locking and unlocking functions, as

shown in the table. Forgetting these extra functions leads to subtle runtime errors or data

corruption that are difficult to debug. Most C++ programmers would choose to use

another API (like Scopira Threads (Section 4.1.4), Qt [14][87] or Boost Threads [16]

[57]), which use basic C++ features (such as RAII, Section 3.4), that would eliminate all

the extra functions and pointer uses.

Boss-worker LOC TOK ATL POP COP ETS EEC EFC

Uniprocessor 0 0 0.0 0 0 0 0 0

POSIX Threads 46 284 6.1 17 0 0 0 14

SAL 33 265 8.0 0 0 0 0 0

PVM 50 596 11.9 34 11 0 43 4

MPI 47 968 20.6 57 9 44 44 0

Table 1: Communication code analysis of the boss-worker algorithms

The SAL implementation required the least amount of code (both in terms of lines

and tokens). This is not surprising as this was one of the design goals of the library.

RAII was used to deliberately remove all possible error-prone extra functions, while

type safety and type-deduction was used to further remove tedious coding burdens from

the programmer.

The SAL library also reuses the Scopira object serialization constructs to perform

data marshaling. This allows the programmer to implement data serialization once for

their objects, and reuse the same code in other serializations activities such as file I/O.

In contrast, the communication/marshaling code in MPI or PVM is specific to those

149

Chapter 7: Results and Discussion

libraries and is unusable in other contexts. Scopira numeric arrays in particular are

already serializable. SAL users need not specify size information when transmitting

arrays or slices, a contributing factor to the zero EEC operations for the SAL

implementation.

The PVM implementation required more than twice the number of tokens as the

SAL version, and 50% more lines of code. However, this is still much less than the MPI

version. PVM contains a function-per-type communication API, enforcing some type

safety, as noted by the lack of ETS operations. The API is also packet based, and

although this is not quantified here, makes for an easier to use API than MPI. The non-

RAII based packet API however includes functions that may be easily forgotten, as

noted by the EFC. Luckily, these types of errors would manifest themselves quite

quickly at run-time, unlike the errors associated with the use of extra functions in the

POSIX Threads implementation. The PVM implementation required a few dangerous

type casting operations to coalesce object data types to PVM data types. However, the

bulk of these casts (COP) were const-type casts, which was required as the PVM API

was not const-correct. Const-correctness requires that C or C++ functions mark any

parameters that they do not change (such as in data sending functions) as const or

constant. Failure to do so may invoke type-errors that the programmer must override

with casts – a tedious and error-prone process.

Finally, the MPI implementation required almost four times the tokens and 50%

more code than the SAL implementation. This is by far the worst, in terms of

150

Chapter 7: Results and Discussion

programmer usability. This may be a design decision, choosing to sacrifice usability for

better programmer control over communication customization and optimization. MPI

functions calls are not packet based and require that the programmer repeat information

for each function call, such as data destination and communication group. This is noted

in the large value for ATL, and is evident with more verbose, cluttered code.

Maintenance costs are also increased since the programmer must manually keep all the

parameters in sync during any changes.

MPI is the only API to use generic void pointers in their communication

functions, requiring the user to specify the type as an option, as denoted by the large

value for ETS. This is particularly error prone when the programmer must verify

(usually by consulting various references) that the language types exactly match the

MPI types.

Both PVM and MPI required pointer operations and element count specifications

even when sending or receiving single elements. This contributed to their POP and

EEC counts greatly and increases the amount of tedious and superfluous code the

programmer has to write.

In conclusion, of the three message passing libraries, SAL provides by far,

according to the metrics, the most usable and least error-prone API interface. In

contrast, despite being the de facto standard of message passing interfaces, MPI

provides the most verbose and tedious API by a large factor. PVM provides a

comfortable middle ground between SAL and MPI. A pure POSIX threads

151

Chapter 7: Results and Discussion

implementation required a surprising amount of code, perhaps signaling developers to

choose more usability-friendly threading libraries.

7.3.2 Peer-to-peer Usability Results and Discussion

Table 2 shows the analytical break down of the communication code for the

various peer-to-peer algorithm implementations. For the most part, all the discussions

and conclusions of Section 7.3.1 apply, and will not be repeated here. There are some

noteworthy differences between the boss-worker results and those of peer-to-peer.

Peer-to-peer LOC TOK ATL POP COP ETS EEC EFC

Uniprocessor 0 0 0.0 0 0 0 0 0

POSIX Threads 40 270 6.8 27 1 0 0 15

SAL 35 530 15.1 0 0 0 0 0

PVM 47 691 14.7 13 0 0 19 14

MPI 33 702 21.3 31 0 17 17 2

Table 2: Communication code analysis of the peer-to-peer algorithms

The peer-to-peer algorithms perform some complex merging of peer data between

communication calls. This code is common to all message passing implementations

(SAL, PVM, and MPI). The complexity of this code is about 100 tokens, and is the

most significant premium (in terms of tokens) that all the message passing libraries pay

over the pure threads implementation. Despite this cost, SAL still has a notable

advantage over PVM and MPI in terms of token counts. For algorithms that work on a

single, shared data object such as this, the shared memory architecture of a threads

152

Chapter 7: Results and Discussion

implementation is quite advantageous in terms of complexity reduction.

PVM, in this case, required higher LOC and EFC values than either SAL or MPI.

PVM requires certain extra maintenance functions to be called per message block. The

peer-to-peer algorithm required many different types of messages to be sent (compared

to the boss-worker algorithm), resulting in PVM accruing more extra function calls and

lines of code counts.

Finally, one issue from Section 7.2.3 regarding MPI performance issues also has

an impact on usability that only subtly shows up in these metrics. The MPI assumption

of synchronous communication with fixed buffer sizes forces the programmer to use

alternate, non-blocking send calls for MPI in the peer-to-peer communication code. This

code required two additional clean-up functions that manifested themselves as two extra

calls (EFC) in the results table. When using MPI, developers must be mindful of its

performance optimizations when developing their algorithms.

Drawing similar conclusions as in Section 7.3.1, we see that SAL is superior to

MPI and PVM in terms of tokens and dangerous operations. With respect to LOC, SAL

is comparable to MPI, but only because MPI's lack of packet based grouping of

communication functions sacrifices token counts for lines of code counts. Surprisingly,

the pure threading implementation also had a comparable LOC values, but with fewer

tokens. A more usability-friendly thread-based API (such as those listed in Section

2.3.2) would help to reduce the lines of code and dangerous operator counts to more

reasonable levels.

153

Chapter 7: Results and Discussion

7.4 Results: Application Integration

The results of the application integration scenarios will be presented here.

7.4.1 Application Design

The test application for assessing application integration issues uses the core boss-

worker algorithm code, SAL for message passing and the Qt [14][87] library for the

user interface. All libraries are well tested on the three test platforms, including both 32-

bit and 64-bit configurations.

The worker code snippets are similar to that of the non-GUI boss-worker

algorithm. That is, they receive work (via SAL), perform it (using the core algorithm

code) and return the results to the boss (via SAL).

The boss code is quite different, as it is now integrated into the GUI. There is no

separate boss thread: the GUI thread, in addition to responding to the usual GUI events

periodically (via a Qt time object) checks the boss SAL message queues and processes

the corresponding message events as needed. Unlike MPI, SAL is message based and

will queue events asynchronously permitting such a configuration. This configuration is

sufficient, as the worker's algorithm performance is not dependent on the latency of the

boss's reply.

In algorithms where the boss process latency is integral to the performance of the

system, the GUI thread would spawn the boss process separately, giving the algorithm

boss its own dedicated thread. This is a required trade-off in avoiding any performance

154

Chapter 7: Results and Discussion

penalties.

The GUI/boss code itself (by design) was relatively straightforward to implement

and understand. Perhaps counter-intuitively, the application's GUI/boss code is actually

simpler than the basic thread code, as SAL forces programmers to compartmentalize

their communication code in explicit message passing blocks. A thread-like

implementation, although potentially faster, involves shared areas locked by mutexes

that are more prone to developer error and race conditions.

Furthermore, development of the desktop application uses the local, threaded

implementation of the SAL message passing engine. This greatly simplified debugging,

as it was restricted to one process. In other message passing libraries, one may need to

debug multiple processes simultaneously, perhaps on separate hosts, greatly increasing

development time.

The application contains a Cluster Status tab to enumerate all the agents

(machines) of the current SAL cluster and their processor counts. This information is

strictly for illustrative purposes and is not required for the operation of the application.

SAL-enabled desktop applications do not need to present this information to the users.

7.4.2 Application Use Cases

In the first use case, the three applications (one per platform: Windows, Mac and

Linux) ran independently. This scenarios represents the lone desktop user, who may not

have, want, or need the computation resources of other hosts. This includes mobile

155

Chapter 7: Results and Discussion

laptop users who are disconnected from their host network.

Figure 20 shows the three applications running on the platforms. The application

is a typical GUI application with menus and interactive output. The user needs only to

start the application via an icon and click through the various functions and options. The

algorithm, via SAL, automatically uses all the processors and cores in each workstation,

without any user configuration or input.

Performance between the three applications of course varies greatly, as the

machines themselves vary in processor power and other factors. In particular, the

Windows workstation is the most powerful with eight processor cores (performing 95

iterations/sec), followed by the Mac with two cores (30 iterations/sec) and Linux with

only one core (and only 8 iterations/sec). The performance per core, of course, is

dependent on the CPU type itself and the optimization capabilities of the respective

C++ compiler.

In the second use case, the three applications (one per platform: Windows, Mac

and Linux) were run as a group. This scenario represents a user or group of users with

moderate computation requirements. They can simply pool their desktop processors into

one computation group. This may be popular for groups without the resources (human

or financial) to support a dedicated compute cluster. Older, idle workstations may be

quickly (without having to change the configuration of the existing operating system)

re-purposed to contribute resources to the group. Traveling laptop users may also form

such groups amongst themselves in an ad-hoc fashion via a wireless network.

156

Chapter 7: Results and Discussion

Figure 20: Application integration demonstration for individual runs

The cluster groups are formed in an automatic manner, using network discovery.

When the second and third instances launch, they automatically discover (and form a

group with) the first application instance. The user does not need to start or stop any

ancillary programs, use the command line or understand anything about networks.

Once an application instance joins the network, it will be able to use all the

processors in the group to perform its tasks. As shown in Figure 21, we see each

instance utilizes all 11 processors in the group and all have about the same performance:

157

Chapter 7: Results and Discussion

130 iterations/sec. Due to SAL's multi-platform support, the weaker machines

workstations (Linux and Mac in this case) are able to use the many processors of the

Windows machine, drastically increasing their performance. This adds to the scientific

utility and extends the life of older hardware by letting them reuse the resource of

newer, more modern workstations.

Figure 21: Application integration demonstration for group runs

158

Chapter 7: Results and Discussion

Finally, in the last case the Windows desktop application is shown (in Figure 22)

using the resource of a dedicated computational Linux cluster. In this scenario, a

desktop Windows user is able to automatically use the resources of a locally managed

Linux cluster greatly increasing the performance (to a total of 436 iterations/sec) of their

algorithm.

Figure 22: Application integration demonstration for cluster runs

The user needs only to start their application in the usual manner (usually by

clicking an icon). The user does not need to be aware of the Linux cluster at all. This

frees the user from having to learn to login, operate and transfer data to and from a

system they may not be familiar with.

159

Chapter 7: Results and Discussion

The automatic discovery mechanism of SAL currently only works with machines

that are on the same IP subnet. If the cluster is on another subnet (as was the case here),

the user's SAL-enabled application must be given the cluster's host URL (link) string.

This link string looks like a web address (although rather than http, it specifies a

scopira protocol). The application can be easily given this link, either as a command

line parameter (which could be embedded in a desktop shortcut icon) or via a

configuration screen in the application itself.

A SAL application, upon failure to connect to any peers of clusters, will

automatically run in a local mode that uses all the processors/cores on the user's

desktop. This means that even if the cluster is unavailable (due to hardware or network

issues) the application is still usable without the need for additional user configuration.

This is particularly handy for mobile laptop users who may be away from their host

cluster, yet still want to be able to use their software.

The SAL processes on the cluster must still be managed by someone. This does

not have to be the developer or otherwise technical user and can be another user or the

system administrator. By design, SAL applications may be easily grouped into cluster

groups by any user. The cluster also does not have to be Linux based, any type can be

assembled by grouping together a variety of workstations as a computation cluster when

using SAL-enabled applications.

160

Chapter 7: Results and Discussion

7.4.3 Application Conclusions

This real-world application, through use cases, presented some of the more

subjective benefits of the Scopira Agents Library. These benefits include:

Embeddability into an existing application as a library. The complete SAL system

can be embedded in the host application as a library requiring no external setup or

management programs (unlike PVM and MPI, which require management programs).

The user does not need to login to unfamiliar systems, or use unfamiliar software, but

instead may run standard desktop applications.

No manual setup for desktop parallelism. The embedded library, when it does not

find any peers or clusters, will immediately use its built in, always available, single-host

threaded engine. This engine is always available to the user and developer, giving the

application multi-processor scalability (using locally available processor cores) without

any setup. This is useful for users who do not have cluster resources available, are

mobile (with a laptop, for example), or have work loads that do not require cluster

computing.

Transparent cluster parallelism. The detection and discovery of other SAL

processor providers is transparent to the end user. A system administrator, the user, or

other users may launch worker SAL processors that automatically provide computation

resources. Clients need not specifically enter the location of these providers, their SAL

library will automatically discover them through standard local area network broadcast

techniques. Should no resources be found, the internal threaded implementation will be

161

Chapter 7: Results and Discussion

used to provide single-host multi-processor/core parallelism.

Multi-platform and ad-hoc computing. Although all parallel libraries are available

on a multitude of platforms, the embeddability of the SAL approach provides new

options for casual and ad-hoc cluster computing. Users may launch multiple instances

of their applications on any major operating system, and through the transparent

discovery mechanism, they will group together and share resources. Users need not

dedicate hardware, consult system administrators or use unfamiliar operating systems to

utilize cluster computing. This is useful for smaller or mobile groups of users that

require less formal network and hardware configurations.

7.5 Other Applications

We used SAL for a number of projects, some of which I now describe.

A full version of stochastic feature selection (SFS) [80] was developed to use

Scopira and the SAL. SFS is an iterative feature dimensionality reduction technique for

the classification of complex voluminous biomedical data. SFS randomly assigns the

original dataset samples (e.g. magnetic resonance spectra) into design and test sets.

Once the design phase is complete (i.e., classification coefficients have been

determined), the test set is used to externally validate the classification performance.

The stochastic nature of SFS is controlled by a feature frequency histogram (Figure 23)

whereby the performance of each classification iteration is assessed using a fitness

function. An ad hoc cumulative distribution function, constructed from this histogram,

162

Chapter 7: Results and Discussion

is iteratively used to randomly sample new features (rather than each feature having an

equal likelihood of being selected for a new classification iteration, only those features

used in previous “successful” iterations are selected). Via SAL, SFS bundles

classification iterations to minimize inter-process communication and maximize CPU

loads. Furthermore, while SFS exploits parallelism, it remains (optionally) strictly

deterministic, that is, results are perfectly reproducible regardless of computational load

(an extremely useful benefit for biomedical research).

Figure 23: Feature frequency histogram used by SFS

The SFS algorithm uses an extensive combinatorial search operation and was

originally implemented using MPI (specifically, the LAM/MPI implementation). The

163

Chapter 7: Results and Discussion

MPI version has been well tested and extensively used. Although functional, the MPI

version was comparatively cumbersome to use, requiring knowledge of logging into the

Linux cluster and slave node startup. Command line usage with graphical monitoring

was clumsy at best requiring a Linux workstation. These usability shortcomings made it

an interesting candidate for converting to SAL.

SFS was subsequently ported to SAL in a relatively straightforward manner. As

the algorithm had already been designed in a parallel fashion, porting simply required

that all the communication/data transport code segments (the segments that utilize MPI)

be converted to use SAL message packets. The application itself was restructured as a

task object as SAL deals with objects rather than whole processes. The new version

maintained the same performance characteristics as the MPI version but now sported an

easier to use interface (available from the user's Windows desktop as a native Windows

application) with seamless access to the compute cluster (forgoing the necessities of

logging into Linux). As an added bonus, the application is also able to run without a

cluster, albeit limited to the resources available at the user's desktop. This allows the

application to be run when the cluster is unavailable, either temporarily due to system

issues or due to temporary unavailability (such as when the user is mobile via a laptop

computer) or when the cluster's resources are simply not needed.

Another application, Raygun, has been developed from the ground-up as a Scopira

application, subsequently using SAL. This application was initially developed to

provide extensive 3D visualization capabilities to data sets produced by a third party

164

Chapter 7: Results and Discussion

application. This application uses a Monte Carlo based simulation to simulate light rays

traveling through a variety of user defined mediums and finally terminating at a

detector. The visualization component allows the researcher to examine large

collections of these rays, with real time 3D capabilities and speedy analysis tools –

much faster and more powerful than the previous MATLAB-built tools.

Along with the visualization component, it was quickly realized that replacing the

propriety ray generation software would be beneficial. Not only was the cost of the

software rather high and its algorithm implementation details unknown, the software

was tied to a Windows machine and required long, often multi-day run times to

complete jobs. Being restricted to a single Windows machine reduced remote access and

left it vulnerable to the general instabilities of the host OS. More importantly, however,

was the lack of cluster support within the application, requiring one machine to spend

multiple days on a problem, ignoring the vast compute resources of any available local

Linux cluster. It was then decided to implement our own Monte Carlo based ray

generation algorithm within the Raygun application, utilizing SAL for parallelization.

The core algorithm itself was written as a single concrete C++ object. Interfaces

(or “views”) were then added to Raygun. The first version simply ran the algorithm

without SAL and therefore used one processor. The second version utilized SAL (and

therefore, all the processors in the available cluster). The version was implemented as

three types of SAL tasks, a worker task, a master task and the monitoring task within the

GUI. The workers run the Monte Carlo simulation algorithm itself, reporting successful

165

Chapter 7: Results and Discussion

rays back to the master task. The master task tracks and coordinates the worker tasks,

but does no work itself. It reports rays and general performance metrics back to the

monitor task, which then displays them to the user in real time.

The Raygun application provides a good use-case of a complete SAL solution.

The application provides a full suite of cluster-aware data simulation and modeling

capabilities, combined with high-performance visualization capabilities. The

investigator gets all of this within a single desktop application environment native to

their familiar operating system, blissfully unaware of the details of cluster computing

and management.

In all cases, the algorithms chosen for implementation in SAL were relatively

friendly to parallelization. That is, they were not communication bandwidth intensive or

sensitive to network delays and latencies. This was deliberate as our network

infrastructure can be considered to be of a typical nature of mostly “fast” (“gigabit”)

Ethernet. Such algorithms' total performance are not significantly affected by the speed

of the transport layer. This is particularly important as the SAL transport layer is slower

than most stock MPI implementations, by design, and much slower than any hardware-

tuned MPI implementations. Communication intensive algorithms are simply out of the

scope of the SAL framework and typically better left to the specifically-tuned

frameworks and hardware.

166

Chapter 8: Conclusions

8 Conclusions

Although SAL is still in development, it is already proving to be a useful library

for cluster computing. The SAL transport layer has yet to undergo aggressive

optimization and, as a result, is slower than a tuned MPI (or similar) implementation,

especially if the competing implementation is tuned for a particular OS or

communication network infrastructure. However, speed was not the primary goal of

SAL. Nevertheless, for a large collection of low-communication applications, SAL

provides more than acceptable performance. This was verified in our own algorithms, as

the SAL implementations of our low-communication applications are linearly scalable

as a function of the number of processors used. For medium-to-high communication

applications, scalability was only slightly worse than PVM.

In the area of developer usage, SAL may be considered to be a general success.

167

Chapter 8: Conclusions

For non-Scopira developers, the API provides yet another message passing API,

requiring parallel programmers to still decompose their applications. The C++ features

provide a more object-oriented approach to a universal task system than that of PVM,

while the embedded non-cluster implementation offers easier debugging and

development. Further, for existing Scopira developers, the library provides a natural

API that is a seamless addition to the Scopira library.

Finally, the users get a significant benefit. Their desktop applications are able to

use behind-the-scenes cluster resources yet still function and behave like their native

desktop applications. They need not learn the technical details of cluster access and

application usage. This lowers the entry barrier to cluster computing allowing all users

within a site to utilize cluster resources, expanding their computational capabilities.

Future research and work includes further developing and deploying more SAL-

based applications. This will allow more testing of both the implementation of the

various SAL engines, as well as test the completeness of the SAL messaging API. The

services concept will further need to be explored and defined, with several services

(initially, the task monitor and job monitor services) slated for development. More

demanding applications will be developed to fully test the task allocation and fault

tolerance capabilities of the SAL system. Various advanced and specific load balancing

algorithms will also be explored. Currently applications only touch on stressing the

basic scheduler. Finally, more general debugging and network monitoring software will

be made to inspect the status and configuration of an active SAL network, helping in

168

Chapter 8: Conclusions

SAL development and providing visual feedback to developers and administrators.

8.1 Answers to Research Questions

This section will outline some of the results framed as answers to the research

questions posed in section 1.4, Research Questions.

This work has shown that through a variety of programming language features

and implementations design choices, parallel application development can be

simplified, permitting the construction of more user-friendly parallel processing

applications:

This solution is easier and less error prone through the use of a variety of C++

programming language features that permit for a more concise library API, that requires

less developer code with more compile-time error checking. I assessed this usability

objectively through a variety of source code metrics that offer a representation of code

complexity. We can then compare these metrics directly, giving a sense of usability and

general programming aids.

With regards to performance, I used straightforward performance measurements,

and compare the proposed solution to that of existing, established libraries, using

various algorithm types and work loads. Acceptable levels of performance are difficult

to determine, as relative performance varies with algorithm type and work load. But for

almost all the tested configurations, the solution shows acceptable (compared to existing

solutions) performance results. This shows that there are some algorithm types and

169

Chapter 8: Conclusions

work loads for which this solution's performance is acceptable.

The solution implements all the characteristics of a fully embeddable library. It is

a self-contained library, utilizes in-process threads and is multi-platform. Supporting the

three major desktop operating systems was deemed a requirement, as this solution

targets desktop and commodity hardware. External and cumbersome infrastructure

software was minimized by containing all the needed management functionality in the

library itself. Basic network broadcasting functions and a straightforward URI-based

connection specification system were implemented to infer network configuration

options for the user.

8.2 Contributions

The main contribution of this work is the design, development, implementation

and assessment of a new parallel programming library, SAL, that provides adequate

performance (efficiency) for a range of parallel programming problems.

The novelty of this parallel programming library is that it is more developer- and

user-friendly than other existing libraries. This novelty has two major facets: (i)

programmer-usability and productivity and (ii) application integration. Together, they

permit a wider range of programmers to use parallel programming in a wider range of

new and existing applications. This goal, user-friendliness, is unique among current

parallel programming libraries.

The result of the novelty is that parallel programming can be embedded into more

170

Chapter 8: Conclusions

applications, especially desktop applications. The user base and use cases for parallel

applications can be increased, resulting in more efficient use of resources in a variety of

applications. With increased efficiency, work can be performed in less time and larger

problems can be tackled.

8.3 Limitations and shortcomings

SAL's advantages are of course not without their trade-offs. By design and

implementation, SAL may be less efficient and less scalable than other libraries. For its

target audience, these sacrifices are acceptable; however, other options may be

preferable to other users. For example, SAL is not designed for grid computing and

communication intensive algorithms. SAL also does not, in its current implementation,

utilize specialized communication hardware or protocols.

SAL's object-oriented design, error checking and buffering causes SAL to have

higher CPU and memory overhead than other optimized libraries, resulting in lower

communication throughput and higher latency.

8.4 Future Work

SAL is a complete, fully tested and usable message passing library that is

immediately available. However, even though its original mandate has been fulfilled,

there are still many areas of possible expansion and feature improvement, some of

which I will now discuss.

171

Chapter 8: Conclusions

8.4.1 Performance Optimizations

The current SAL network engine strived for correctness and ease of source code

maintainability, while sacrificing performance. Future work includes optimizing this

engine for better network performance, through various API and implementation

enhancements. For example, a UDP-based transport layer could be considered,

sacrificing the guaranteed reliability of TCP for the speed of UDP. This sacrifice may be

acceptable in error-free networks such as those in controlled compute cluster

environments. Interfacing with specialized, high-performance communication hardware

such as Infiniband [51] could be considered.

8.4.2 Load balancing and task migration

Network wide load-balancing can be added by allowing long running tasks to be

migrated, mid-run, to less loaded hosts. This would permit on the fly per-host load

adjustments, a necessity when machine loads change. Programmers would follow an

object-oriented style in utilizing this feature: they would permit their task objects to be

serializable (that is, its state reduced to a byte stream) by implementing load and save

methods in their task objects. This same concept is used to permit compound data

structures to be sent over the network. SAL would not use any specialized (and thus

hardware or at least platform specific) stack-saving functions – the save methods

would only be called between run method calls.

This same serialization concept could be used to do check-pointing for fault

172

Chapter 8: Conclusions

tolerance. The state of a running task would be periodically saved to disk (or another

host). If the task should subsequently fault – disconnect or crash due to software,

hardware or network issues – the master will restart the task from its last recorded state

on a new agent, giving the task another chance to finish its work. Agents could be

configured to only run one user task per process, permitting operating system enforced

security and protection between tasks.

Some of these functions could be implemented now, either in user code or as a

service task. This would permit experimentation without having to make potentially

tricky engine code adjustments.

8.4.3 Decentralized Networking

The master-agent architecture of the current network engine implementation could

be expanded to be more scalable with secondary master agents, or backup agents. This

would permit better fault tolerance for when the master agent's host is lost and permit

the use of larger networks as it distributes the routing and task management bottlenecks.

Eventually, this concept can be taken to its natural conclusion in the form a

decentralized engine implementation. Unlike the current network implementation,

which has a master agent, the decentralized version would not have any designed

masters and be purely peer-to-peer. This would be a significant challenge, as it requires

much more complexity with respect to task management, message routing and

scalability. The resulting system however would have grid-computing like scalability

173

Chapter 8: Conclusions

and fault tolerance.

8.4.4 Algorithm Exceptions

SAL permits the development of fault tolerant algorithm implementations. An

implementation is fault tolerant if it can continue processing (or at the very least, fail

gracefully) after the loss of a processing peer.

SAL provides, with its API, the functionality needed to explicitly monitor peers.

However, for algorithm implementations that simply want to fail gracefully (rather than

attempt to recover and continue processing), the SAL API could be more automatic and

helpful.

Using C++ exceptions, the SAL API could trigger termination of the user's task

code when it detects a error. Errors could be defined as attempting to communicate

(either by sending or waiting for data) with an abruptly terminated peer node

(terminated either because of algorithm bugs or because of system faults). The error

condition would eventually be discovered by all the member tasks in the task group,

effectively (and safely) terminating the group. The initiator of the task group (usually

the user via a GUI) could then choose to rerun the algorithm with a new task group.

However, the exception mechanism must be used judiciously to avoid unintended

consequences in algorithm implementation design. Many use cases and scenarios would

have to be considered and tested.

174

Chapter 8: Conclusions

8.4.5 Additional Message Interfaces

For applications that would like to use the transport services and communications

system but not necessarily the SAL messaging API, SAL provides various wrapper

APIs. These interfaces are not part of the core body of research but are available in an

experimental fashion for possible future work. They were used to test the scheduling

engines with existing MPI user programs. Future work could look into extending these

APIs, in the hopes of further widening the use of SAL. However, using alternative

messaging APIs does eliminate one of the main benefits of SAL: providing an easier to

use messaging API.

A minimal MPI interface is provided that bridges MPI-enabled applications to the

agents transport layer. It does this by mapping the basic MPI communicator concept to

an agent group and encapsulating every MPI message in a SAL message packet.

Although this API and implementation combination would be slower than a plain MPI

implementation (and much slower when compared to an implementation optimized for

particular communication hardware), it is still quite useful. For applications that are not

bandwidth or latency sensitive, the difference in performance would be negligible with

respect to total run times. Furthermore, this bridge-API allows the application code to

be reused and utilize a SAL network. This serves as a way to test and benchmark the

SAL implementation against a reference MPI implementation. Finally, programs using

this MPI API can be made to communicate with standard agent algorithms and services

in a straightforward manner.

175

Chapter 8: Conclusions

SAL also includes a small API for MATLAB applications. This API permits data

passing between running MATLAB and SAL-enabled applications using the agents

network transport. Although basic, this API does allow developers to build parallel

applications with MATLAB without requiring the Cluster Toolkit (from MathWorks,

Inc.), a native toolkit that provides cluster computing facilities for MATLAB. Finally,

these MATLAB processes, by virtue of the agents network, may communicate with

C++-built applications and thereby offload processor-intensive computations.

Scopira also provides a PVM layer that helps Scopira applications utilize the

PVM API. This library is currently being used to quickly compare PVM and SAL

applications with respect to performance and may eventually form the basis for a PVM

layer over SAL. Other relationships between PVM and SAL may also be explored, such

as allowing the PVM server daemons to launch SAL agents, similar to the use of using

PVM to bridge disjoint MPI instances [34].

176

Appendix A: Algorithm Pseudo-Code

Appendix A: Algorithm Pseudo-Code

This appendix contains an overview of the algorithms used in the test programs.

This is only a brief overview (pseudo-code), for a detailed list, the source code should

be consulted.

Boss-worker

The boss-worker algorithm is a rudimentary version of Stochastic Feature

Selection (SFS) [80], a feature-reduction strategy that aids in the classification of

biomedical data sets. The input to such an algorithm is a dataset of patterns, where each

pattern has a set of features and a class label. The goal of a feature reduction algorithm

is to find only the discriminating features of the dataset that help a classification

algorithm predict the class labels. This is vital for many types of datasets that contain a

177

Appendix A: Algorithm Pseudo-Code

large ratio of features to patterns, which can cause problems for classification

algorithms. The pseudo-code of the algorithm is:

• As input, take in a matrix (two dimensional array) of features (where each

column is a feature and each row is a pattern) and a vector of class labels.

Choose some subset of the patterns to be the training set, leaving the others to

be the test set.

• While the done criteria has not been met:

◦ Choose a random subset of the features, following certain selection rules (for

example, some selected regions may be combinations of subregions in the

original dataset).

◦ Train a classifier on the training patterns and this selected subset of features,

and then test the classifier on the testing patterns. This implementation uses

Linear Discriminant Analysis (LDA) [95], but other classifiers can be easily

(and in the full version of SFS are) used.

◦ If the percentage of correct classifications is better than the best result thus

far, then note this percentage (and its regions) as the current best.

◦ Stop the loop after some threshold has been met, for example, an iteration

limit, time limit, or classification accuracy.

• Finally, report the run time, iteration count and the best feature subset with its

accuracy percentage.

178

Appendix A: Algorithm Pseudo-Code

Peer-to-peer

This peer-to-peer algorithm is an implementation of Conway's Game of Life, a

classic, deterministic cellular automaton played out on a two-dimensional matrix. Each

element (cell) in the matrix has one of two states, alive or dead. Subsequent states of a

cell depend on the previous state and its immediate eight-connected neighbors' states.

The algorithm is completely deterministic except for the initial random generation of

the cell matrix. The pseudo-code of the algorithm is:

• Randomly create the first two-dimensional integer matrix of logical values (0 for

dead, 1 for alive). This becomes the first current matrix..

• While the done criteria has not been met:

◦ Prepare the next matrix by applying the following deterministic rules to each

new cell:

▪ A dead cell becomes alive if it has exactly three alive neighbors.

▪ An alive cell continues to live if, and only if, it has two or three

neighbors.

◦ This new matrix becomes the current matrix for the next iteration of the

algorithm.

◦ Stop the loop after some threshold has been met, such an iteration limit, time

limit, or if the system has reached a stable or cyclic state.

• Finally, report the run time, iteration count and the final state matrix.

179

Appendix B: Electronic Files

Appendix B: Electronic Files

The source code to Scopira and the Scopira Agents Library (SAL) as well as all

the experiment programs used in this work are available on-line, at the following

location:

http://www.cs.umanitoba.ca/~ademko/thesis/

To compile the applications on any platform, a developer needs (in addition to a

C++ compiler) the following additional, readily available software packages:

● CMake for setting up the project or make files.

● PVM libraries (optional) for building the PVM test programs.

● A MPI library (optional) for building the MPI test programs.

● The Qt (optional) cross-platform application and UI framework is required for

building the desktop application test program.

180

Appendix C: Experiment Protocol

Appendix C: Experiment Protocol

This appendix will describe, in detail, how the experiments were conducted.

Performance Experiments

Exact performance results are specific to the hardware used in the experiments.

The experiments in this work were carried out using the following hardware:

● Single-node: A Dell PowerEdge 1950 computer, with two 4-core Intel Xeon

E5410 processors (running at 2.33 GHz), running Ubuntu Linux 8.10.

● Multi-node: A set of 10 IBM EServe 326 computers, each with two AMD

Opteron 250 processors (running at 2.4 GHz), running Fedora Core 3 Linux,

connected via a giga-bit network.

181

Appendix C: Experiment Protocol

The boss-worker algorithm implementations are represented by the five

executables: sfs_uni, sfs_thr, sfs_age, sfs_pvm and sfs_mpi. They are all

command line programs that accept at variety of parameters that affect their runs. Upon

completion, all the programs emit a one-line report that summarizes their performance

in terms of algorithm iterations/second and iterations/second/processor.

All boss-work runs were run for 1,000 seconds (parameter T=1000), using the

default dataset and parameters.

For the single-node runs, the four implementations (sfs_thr, sfs_age, sfs_pvm

and sfs_mpi) were run using a varying number of processors (parameter P=1,2,4,6,8)

and compared to the uniprocessor run (sfs_uni) for efficiency.

For multi-node runs, three implementations were tested (sfs_age, sfs_pvm and

sfs_mpi) with a range of processors (parameter P=1,2,4,8,12,16,20).

The peer-to-peer algorithm implementations are represented by the five

executables: conway_uni, conway_thr, conway_age, conway_pvm and conway_mpi.

They are all command line programs that accept a variety of parameters that affect their

runs. Upon completion, all the programs emit a one-line report that summarizes their

performance in terms of algorithm iterations/second and iterations/second/processor.

All peer-to-peer runs were run for 500 seconds (parameter T=500) using the

default initialization seed.

The single-node and multi-node runs were executed in the same manner as that of

the boss-worker algorithm.

182

Appendix C: Experiment Protocol

For the peer-to-peer algorithm, the job or image size must be specified with the

parameter N. This parameter represents the image size, in cells (the actual width and

height of the image are the square roots, approximately, of N). We used was

N=1,000,000, N=10,000,000 and N=100,000,000. The numbers were abbreviated to

N=1, N=10 and N=100 in the final reports.

The experiment results presented in Chapter 7 were the best efficiency values for

multiple runs using all combinations of algorithms, libraries, and P. For a specific

combination, X, of algorithm, library, and P, five runs were performed. Since each

algorithm is deterministic in nature, it is expected that, apart from external factors such

as extreme system loads, the efficiency values should be similar. If a run was unduly

influenced by an external factor, it was ignored and X was run again. Since the standard

deviations were small across all combinations, and in the interest of clarity of

presentation, we decided not to include the error bars in the plots. Moreover, we

extrapolated experiment results to larger P (e.g., P=64). The expositions relating to P=8

were not further elucidated with larger P. Therefore, in order to avoid redundancy, we

decided not to include these results in Chapter 7.

Usability Experiments

For the objective code usability analysis, the source code was manually counted

and itemized. A manual method was chosen for its simplicity and its feasibility, as the

number of code lines was manageable.

183

Appendix C: Experiment Protocol

For each relevant (that is, code involved in communication) code line, a C++

comment was embedded with the token count and (if any) dangerous operator counts.

These special count comments remain in the source code for reference.

The simple utility program code_snip_all and code_snip inspect all the

source code for these special count comments to produce an itemized report. The tables

in the results chapter present the contents of this report verbatim.

Application Integration Experiments

The application integration demonstration was run on average hardware:

● A Dell workstation running Microsoft Windows 7,

● An Apple Mac Mini running OS X 10.6,

● A Dell workstation running Ubuntu Linux 9.10.

184

Bibliography

Bibliography

[1] Advanced Micro Devices, Inc.: http://www.amd.com/

[2] Alkalai L, Tai AT, Long-life deep-space applications, IEEE Computer, 31,

37-38 (1998)

[3] Amarasinghe SP, Anderson JM, Lam MS, Tseng CW, The SUIF Compiler

for Scalable Parallel Machines, Proceedings of the Seventh SIAM

Conference on Parallel Processing for Scientific Computing, Philadelphia:

SIAM, 662-667 (1995)

[4] Amdahl G, The Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities, Proceedings of AFIPS Spring Join

Computer Conference, Atlantic City: AFIPS Press, 483–485 (1967)

[5] Anderson D, Cobb J, Korpela E, Lebofsky M, Werthimer D, SETI@home:

185

Bibliography

An Experiment in Public-Resource Computing, Communications of the

ACM, 45, 56-61 (2002)

[6] Anderson DP, BOINC: A System for Public-Resource Computing and

Storage, 5th IEEE/ACM International Workshop on Grid Computing, 4-10

(2004)

[7] Anderson JC, Lehnardt J, Slater N, CouchDB: The Definitive Guide,

Sebastopol: O'Reilly Media (2010)

[8] Apache CouchDB: http://couchdb.apache.org/

[9] Armstrong J, The development of Erlang, The Ninth Exhibition and

Symposium on Industrial Applications of Prolog, October 16-18, Hino,

Japan, 16-18 (1996)

[10] Armstrong J, Programming Erlang: Software for a Concurrent World,

Pragmatic Bookshelf (2007)

[11] Barak A, La'adan O, The MOSIX Multicomputer Operating System for

High Performance Cluster Computing, Journal of Future Generation

Computer Systems, 13, 361-372 (1998)

[12] Berkeley Unified Parallel C: http://upc.lbl.gov/

[13] Bezdek J, Ehrlich R, Full W, FCM: the fuzzy c-means clustering algorithm,

Computational Geosciences, 10, 191–203 (1984)

[14] Blanchette J, Summerfield M, C++ GUI Programming with Qt 4, Upper

Saddle River: Prentice Hall (2008)

186

Bibliography

[15] Blitz++: C++ Library: http://www.oonumerics.org/blitz

[16] Boost C++ Libraries: http://www.boost.org

[17] Bowman KP, An Introduction to Programming with IDL, Burlington:

Elsevier (2006)

[18] Brezinski ME, Tearney GJ, Boppart SA, et al, Optical biopsy with optical

coherence tomography: feasibility for surgical diagnostics, Surg Res, 71,

32–40 (1997)

[19] Bryant R, Hawkes J, Linux® Scalability for Large NUMA Systems, Ottawa

Linux Symposium (2003)

[20] Burns G, Daoud R, Vaigl J, LAM: An open cluster environment for MPI,

Proceedings of Supercomputing Symposium, 379-386 (1994)

[21] Butenhof DR, Programming with POSIX Threads, Upper Saddle River:

Addison-Wesley (1997)

[22] Caglar SG, Benson GD, Huang Q, Chu C, USFMPI: A multi-threaded

implementation of MPI for Linux clusters, Proceedings of the International

Conference on Parallel and Distributed Computing and Systems, November

3-5, Marina del Rey, USA, 392-104 (2003)

[23] Carlson W, Draper J, Culler D, Yelick K, Brooks E, Warren K, Introduction

to UPC and Language Specification, Computing Sciences (1999)

[24] Chandra R, Menon R, Dagum L, Kohr D, Maydan D, McDonald J, Parallel

Programming in OpenMP, San Francisco: Morgan Kaufmann (2000)

187

Bibliography

[25] Cray Inc.: http://www.cray.com/

[26] Dahl O, Nygaard K, The development of the Simula language, History of

Programming Languages (Wexelblat, R (ed)), San Diego: Academic Press,

439-493 (1981)

[27] Dean J, Ghemawat S, MapReduce: Simplified Data Processing on Large

Clusters, Proceedings of the Symposium on Operating System Design and

Implementation, San Francisco, 137-149 (2004)

[28] Demko AB, Pizzi NJ, Scopira: An open source C++ framework for

biomedical data analysis applications, Software—Practice and Experience,

39, 641–660 (2009)

[29] Demko AB, Pizzi NJ, Somorjai RL, Scopira – A system for the analysis of

biomedical data, Proceedings of the IEEE Canadian Conference on

Electrical and Computer Engineering, 1093–1098 (2002)

[30] Demko AB, Vivanco RA, Pizzi NJ, Scopira: An open source C++

framework for biomedical data analysis applications - a research project

report, Companion Proceedings of the ACM Conference Object-Oriented

Programming, Systems, Languages, and Applications, 138-139 (2005)

[31] Duncan R, A Survey of Parallel Computer Architectures, IEEE Computer,

23, 5-16 (1990)

[32] Ellis MA, Stroustrup B, The Annotated C++ Reference Manual,

Indianapolis: Addison-Wesley (1990)

188

Bibliography

[33] Erlang: http://www.erlang.org/

[34] Fagg G, Dongarra J, PVMPI: An Integration of PVM and MPI systems,

Calculateurs Paralleles, 8(2), 151-166 (1996)

[35] Fenton W, Ramkumar B, Saletore VA, Sinha AB, Kale LV, Supporting

machine independent programming on diverse parallel architectures,

Proceedings of the International Conference on Parallel Processing, 193-201

(1991)

[36] Flynn M, Some Computer Organizations and Their Effectiveness, IEEE

Transactions on Computers, 21(9), 948-960 (1972)

[37] Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderam VS,

PVM: Parallel Virtual Machine, Cambridge: MIT Press (1994)

[38] GNU Compiler Collection: http://gcc.gnu.org/

[39] GNU Unified Parallel C: http://www.gwu.edu/~upc/software/gnu-upc.html

[40] Google Inc.: http://www.google.com/

[41] Gough BJ, Stallman RM, An Introduction to GCC, Bristol: Network Theory

Ltd. (2004)

[42] Gropp W, Lusk E, Ashton D, Buntinas D, Butler R, Chan A, Ross R, Thakur

R, Toonen B, MPICH2 User's Guide, Argonne National Laboratory (2006)

[43] GTKGLExt: Main Page: http://www.k-3d.org/gtkglext/

[44] Hall MW, Anderson JM, Amarasinghe SP, Murphy BR, Liao SW, Bugnion

E, Lam MS, Maximizing Multiprocessor Performance with the SUIF

189

Bibliography

Compiler, IEEE Computer, 29(12), 84-89 (1996)

[45] Hibbard PG, Parallel Processing Facilities, New Directions in Algorithmic

Languages, (1976)

[46] Hill FS, Kelley SM, Computer Graphics Using OpenGL, Upper Saddle

River: Prentice Hall (2006)

[47] Horton I, Ivor Horton's Beginning Visual C++ 2008, Indianapolis: Wrox

(2008)

[48] Huang D, Swanson EA, Lin CP, et al, Optical Coherence Tomography,

Science, 14, 1178–1181 (1991)

[49] Huettel SA, Song AW, McCarthy G, Functional Magnetic Resonance

Imaging, Sinauer Associates: Sunderland (2004)

[50] Ibanez L, Schroeder W, The ITK Software Guide 2.4, Clifton Park: Kitware

(2005)

[51] Infiniband Trade Association: http://www.infinibandta.org/

[52] Intel Compilers: http://software.intel.com/en-us/intel-compilers/

[53] Intel Corporation: http://www.intel.com/

[54] ITK: NLM Insight, Segmentation & Registration Toolkit: http://www.itk.org

[55] Java Programming Language: http://java.sun.com/

[56] Kale LV, The Chare Kernel parallel programming language and system,

Proceedings of the International Conference on Parallel Processing, 99-108

(1990)

190

Bibliography

[57] Karlsson B, Beyond the C++ Standard Library: An Introduction to Boost,

Reading: Addison-Wesley Professional (2005)

[58] Kernighan B, Richie D, The C Programming Language, Prentice Hall

(1988)

[59] Khronos OpenCL: http://www.khronos.org/opencl/

[60] Korpela E, Werthimer D, Anderson D, Cobb J, SETI@home - Massively

Distributed Computing for SETI, Computing in Science & Engineering, 3,

78-83 (2001)

[61] Koza J, Genetic Programming: On the Programming of Computers by

Means of Natural Selection, Cambridge: MIT Press (1992)

[62] Krause A, Foundations of GTK+ Development, New York: Springer-Verlag

(2007)

[63] Kupferschmid M, Classical Fortran: Programming for Engineering and

Scientific Applications, Second Edition, Boca Rotan: CRC Press (2009)

[64] Larson SM, Snow CD, Shirts M, Pande VS, Folding@Home and

Genome@Home: Using distributed computing to tackle previously

intractable problems in computational biology, Computational Genomics

(2002)

[65] Laxmikant VK, Krishnan S, CHARM++: A Portable Concurrent Object

Oriented System Based On C++, Proceedings of the Conference on Object

Oriented Programming Systems, Languages and Applications, 91-108

191

Bibliography

(1993)

[66] Mandelzweig M, Demko AB, Dolenko B, Somorjai RL, Pizzi NL, A

projection method for the visualization of high-dimensional biomedical

datasets, Proceedings of the IEEE Canadian Conference on Electrical and

Computer Engineering, 1453-1456 (2003)

[67] Maplesoft: http://www.maplesoft.com/

[68] Message Passing Interface Forum: http://www.mpi-forum.org

[69] Meyer B, Object-Oriented Software Construction, Upper Saddle River:

Prentice Hall (1997)

[70] Moore GE, Cramming More Components Onto Integrated Circuits,

Electronics Magazine, 38, 114-117 (1965)

[71] Moore GE, Lithography and the Future of Moore's Law, Optical/Laser

Microlithography VIII: Proceedings of the SPIE, 2-17 (1995)

[72] MOSIX: Cluster and Multi-Cluster Management: http://www.mosix.org/

[73] MPI Forum, MPI: A Message Passing Interface Standard, University of

Tennessee (1993)

[74] MPI Forum, MPI-2: Extensions to the Message Passing Interface,

University of Tennessee (1997)

[75] Nwana HS, Software Agents: An Overview, Knowledge Engineering

Review, 11, 1-40 (1996)

[76] Object Management Group: http://www.omg.org/

192

Bibliography

[77] OpenGL: The Industry's Foundation for High Performance Graphics:

http://www.opengl.org

[78] OpenMP API Specification: http://openmp.org/

[79] Pizzi N, Vivanco R, Somorjai RL, EvIdent: a functional magnetic

resonance image analysis system, Artificial Intelligence in Medicine, 21,

263–269 (2001)

[80] Pizzi NJ, Classification of biomedical spectra using stochastic feature

selection, Neural Network World, 15(3), 257–268 (2005)

[81] Pizzi NJ, Demko A, Pedrycz W, Classification using an adaptive fuzzy

network, Proceedings of the Annual Meeting of the North American Fuzzy

Information Processing Society, July 12–14, 41–46 (2010)

[82] Pizzi NJ, Demko A, Pedrycz W, Variance analysis and biomedical pattern

classification, Proceedings of the World Congress on Computational

Intelligence, July 18–23, Barcelona, Spain, 3296–3303 (2010)

[83] Pizzi NJ, Demko A, Pedrycz W, The analysis of software complexity using

stochastic metric selection, Journal of Pattern Recognition Research, 6(1),

19-31 (2011)

[84] Platform Computing Coporation: http://www.scali.com/

[85] PVM: Parallel Virtual Machine: http://www.csm.ornl.gov/pvm

[86] Python Programming Language: http://www.python.org/

[87] Qt - Cross-platform application framework: http://qt.nokia.com/

193

Bibliography

[88] QtConcurrent: http://labs.trolltech.com/page/Projects/Threads/QtConcurrent

[89] Reinders J, Intel Threading Building Blocks: Outfitting C++ for Multi-Core

Processor Parallelism, Sebastopol: O'Reilly Media (2007)

[90] Ridge D, Becker D, Merkey P, Sterling T, Beowulf: Harnessing the Power

of Parallelism in a Pile-of-PCs, Proceedings, IEEE Aerospace, 79-91 (1997)

[91] Ruby Programming Language: http://www.ruby-lang.org/

[92] Sanders J, Kandrot E, CUDA by Example: An Introduction to General-

Purpose GPU Programming , Reading: Addison-Wesley Professional

(2010)

[93] Schroeder W, Martin K, Lorensen B, Visualization Toolkit: An Object-

Oriented Approach to 3D Graphics, Clifton Park: Kitware (2006)

[94] Scopira Website: http://scopira.org/

[95] Seber G, Multivariate Observations, New York: Wiley (1984)

[96] Siegel J, CORBA 3 Fundamentals and Programming, Wiley Computer

Books (2000)

[97] Sigmon K, Davis TA, Matlab Primer, Boca Raton: CRC Press (2004)

[98] Silicon Graphics International: http://www.sgi.com/

[99] Snir M, Gropp W, MPI: The Complete Reference, Cambridge: MIT Press

(1998)

[100] Somorjai RL, Alexander M, Baumgartner R, Booth S, Bowman C, Demko

A, Dolenko B, Mandelzweig M, Nikulin AE, Pizzi N, Pranckeviciene E,

194

Bibliography

Summers S, Zhilkin P, A data-driven, flexible machine learning strategy for

the classification of biomedical data, In: Artificial Intelligence Methods and

Tools for Systems Biology (Dubitzky W, Azuaje F (eds.)), 67-85 (2004)

[101] Somorjai RL, Demko A, Mandelzweig M, Dolenko B, Nikulin AE,

Baumgartner R, Pizzi NJ, Mapping high-dimensional data onto a relative

distance plane — an exact method for visualizing and characterizing high-

dimensional patterns, Journal of Biomedical Informatics, 37, 366–379

(2004)

[102] Sowa MG, Friesen JR, Demko A, Schattka B, Stone T, McDonald DS,

Sigurdson L, Buchel E, Hayakawa T, Quantitative Analysis of ICG

Fluorescence Angiography and Correlation with Flap Outcome: a Reverse

McFarlane Skin Flap Model Study, Plastic and Reconstructive Surgery

(2010, submitted for review)

[103] Sterling T, Becker DJ, Savarese D, Dorband JE, Ranawake UA, Packer CV,

Beowulf: A Parallel Workstation For Scientific Computation, Proceedings of

the International Conference on Parallel Processing, 11-14 (1995)

[104] Stroustrup B, The C++ Programming Language, Indianapolis: Addison-

Wesley (1986)

[105] Stroustrup B, The Design and Evolution of C++, Indianapolis: Addison-

Wesley (1994)

[106] Stroustrup B, The C++ Programming Language: Special Edition, Reading:

195

Bibliography

Addison-Wesley Professional (2000)

[107] Surhone ML, Timpledon MT, Marseken SF, Unified Parallel C, Betascript

Publishing (2010)

[108] Sutter H, Exceptional C++, Indianapolis: Addison-Wesley (1999)

[109] Sutter H, More Exceptional C++, Indianapolis: Addison-Wesley (2002)

[110] The GTK+ Project: http://www.gtk.org

[111] The MathWorks: http://www.mathworks.com

[112] The Portland Group: http://www.pgroup.com/

[113] Thread Building Blocks: http://www.threadingbuildingblocks.org/

[114] Tsuchiyama R, Nakamura T, Iizuka T, Asahara A, Miki S, Tagawa S, The

OpenCL Programming Book, Fixstars Corporation (2010)

[115] Visual Information Solutions: http://rsinc.com/idl

[116] VTK: The Visualization Toolkit: http://www.vtk.org

196

	1 Introduction
	1.1 Motivation
	1.2 Target User
	1.3 Problem Definition
	1.4 Research Questions
	1.5 Thesis Statement
	1.6 Thesis Objectives
	1.6.1 Grand Objective
	1.6.2 Method Objectives
	1.6.3 Novelty and Contributions

	1.7 Thesis Organization

	2 Background: Parallel Programming
	2.1 Introduction
	2.2 Design and Organization
	2.2.1 Design Methodology
	2.2.2 Programming Challenges
	2.2.3 Organizational Models

	2.3 Standard Libraries
	2.3.1 Multiple Single Instances
	2.3.2 Threads
	2.3.3 Interprocess Communication
	2.3.4 TCP/IP

	2.4 Message Passing Libraries
	2.4.1 MPI
	2.4.2 MPI (C++ API)
	2.4.3 PVM
	2.4.4 Charm++
	2.4.5 CORBA

	2.5 Task Based Libraries
	2.5.1 BOINC
	2.5.2 QtConcurrent
	2.5.3 Threading Building Blocks

	2.6 Language Extensions
	2.6.1 OpenMP
	2.6.2 Unified Parallel C
	2.6.3 Erlang

	2.7 Other Solutions
	2.7.1 Mosix
	2.7.2 OpenCL

	3 Background: The C++ Language
	3.1 Introduction
	3.2 History
	3.3 Object-oriented programming
	3.4 Class Destructors and RAII
	3.5 Generic Programming
	3.6 Memory management
	3.7 Parallelism In C++
	3.8 The Standard C++ Library

	4 Background: The Scopira Library
	4.1 Scopira Tools
	4.1.1 Memory Management
	4.1.2 Input/Output
	4.1.3 Configuration Handling and Plug-ins
	4.1.4 Other Utilities

	4.2 Numerical Functions
	4.2.1 Background: Arrays
	4.2.2 The nindex Class
	4.2.3 The narray Class
	4.2.4 The nslice Class
	4.2.5 Memory Mapping

	4.3 Graphical User Interface Library
	4.3.1 Model-View Plugin Framework
	4.3.2 3D Visualization

	4.4 Applications

	5 Design
	5.1 Overview and Goals
	5.1.1 Relation to Scopira
	5.1.2 Goals and Limitations
	5.1.3 Implementation Goals

	5.2 Messaging API
	5.2.1 Tasks
	5.2.2 Context Interface
	5.2.3 Message Sending Objects
	5.2.4 Task Creation and Monitoring
	5.2.5 Messaging
	5.2.6 Services

	5.3 Scheduling Engines
	5.3.1 Local Engine
	5.3.2 Network Engine
	5.3.2.1 Topology
	5.3.2.1 Task Management

	5.4 Sample Services
	5.5 Deployment

	6 Experiments
	6.1 Introduction
	6.1.1 Setup
	6.1.1.1 Compared Libraries
	6.1.1.2 Test Programs
	6.1.1.3 Test Hardware

	6.2 Assessing Performance
	6.2.1 Performance Comparisons

	6.3 Assessing Usability
	6.4 Assessing Application Integration

	7 Results and Discussion
	7.1 Introduction
	7.2 Results: Performance
	7.2.1 Boss-worker
	7.2.2 Peer-to-peer
	7.2.3 MPI Performance Notes

	7.3 Results: Usability
	7.3.1 Boss-worker Usability Results and Discussion
	7.3.2 Peer-to-peer Usability Results and Discussion

	7.4 Results: Application Integration
	7.4.1 Application Design
	7.4.2 Application Use Cases
	7.4.3 Application Conclusions

	7.5 Other Applications

	8 Conclusions
	8.1 Answers to Research Questions
	8.2 Contributions
	8.3 Limitations and shortcomings
	8.4 Future Work
	8.4.1 Performance Optimizations
	8.4.2 Load balancing and task migration
	8.4.3 Decentralized Networking
	8.4.4 Algorithm Exceptions
	8.4.5 Additional Message Interfaces

