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Abstract

Clusters of commodity, “off the shelf” workstations have given developers and 

users access to  scalable  and affordable computing resources.  However,  unlike large, 

symmetric  multi-processing  machines,  these  clusters  have  an  up  front  cost  in 

complexity, both for the developer and the user.  Existing software frameworks have 

attempted to mitigate this complexity  with varied success. In most frameworks, the user 

is forgotten and left to deal with an unwieldy application.

This thesis presents the design, development and testing of a new C++ computer 

programming  library,  Scopira  Agents  Library  (SAL).  SAL  is  a  message  passing 

interface and implementation suitable for building parallel applications, with a focus on 

developer  ease  of  use  and  user  application  deployment  specification.  The  target 

developers and users of such a solution would be those who prefer an easy to develop 

library,  with simpler  deployment and application integration options  with acceptable 

sacrifices to performance and scalability.

The novelty of this parallel programming  library is that it is more user-friendly 

than other existing libraries. This novelty has two major facets: (i) programmer-usability 

and productivity and (ii) application integration. Together, they permit a wider range of 

programmers  to  utilize  parallel  programming in  a  wider  range of  new and existing 

applications. This goal, user-friendliness, is  rare among current parallel programming 

libraries.

The result of the novelty is that parallel programming can be embedded into more 
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applications, especially desktop applications. The user base and use cases for parallel 

applications can be increased, resulting in more efficient use of resources in a variety of 

applications. With increased efficiency, work can be performed in less time and larger 

problems can be tackled.
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Chapter 1: Introduction

1 Introduction

1.1 Motivation

Cluster  and  parallel  computing  continues  to  be  the  domain  of  experienced 

algorithm developers and power users. Developers must be skilled in many areas to 

correctly  and efficiently  write  parallel  programs. To write  efficient  code,  familiarity 

with a low level language such as C is crucial, giving the developer full control over 

memory use and processor utilization. The developer must be familiar with Linux (or 

some UNIX variant) as it is the operating system of choice for computation clusters, 

even  though  many  developers  write  their  applications  on  their  desktop  computers, 

which are often running Microsoft Windows. The developer must be familiar with a 

message passing library, its programming interface, deployment methods and debugging 
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systems. Finally,  programmers must be familiar  with how to decompose and design 

their algorithm in a parallel fashion.

For many developers, these upfront learning and development costs outweigh the 

benefits.  Either  the  algorithms  have  moderate  computational  processing  demands, 

running  within  long  (but  acceptable)  time  frames  on  single  processors,  or  the 

developer's program is simply tied to an interactive desktop application paradigm.

Users  often  prefer  to  use  desktop  applications  over  harder  to  use,  specialized 

parallel applications. Ease of use, familiarity and availability of their workstations and 

laptops make them preferable, even if their performance is less than optimal.

Typically parallel applications provide a contrasting experience to the user. The 

parallel application typically runs on a local Linux cluster. This often requires being on 

site  (for  example,  due  to  network  firewall  restrictions  or  bandwidth  requirements), 

eliminating mobile and off-line access. The user must remember and use an additional 

user  name  and  password  to  access  the  system.  The  user  must  then  login  to  the 

potentially unfamiliar system and  use  its interface. The user might have to remember 

the commands for some obscure non-graphical application or re-familiarize themselves 

with an alien graphical desktop. The files accessible by the compute cluster may or may 

not map to files that the user's desktop can access, which may involve further manual 

file  copy  operations.  This  experience  is  in  stark  contrast  to  that  of  local  desktop 

applications.

Clearly,  there  is  room  for  improvement.  How  can  parallel  application 
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development be made easier for the application developer and who can then utilize 

parallel  processing  in  user-friendly applications? How can developers  become more 

productive parallel  algorithm developers  so that  users  will  accept higher-performing 

applications  without  losing  the  user-friendly  graphical  interfaces  to  which  they  are 

accustomed?  The  contribution of  this  dissertation  will  be  the  introduction  and 

implementation of one possible solution.

1.2 Target User

There are many parallel programming solutions and message passing libraries in 

existence  today  (see  Chapter  2 for  a  background overview).  However,  none of  the 

existing  message  passing  libraries  focuses on  ease  of  use.  The  focus  is  usually  on 

performance  and scalability,  with  little  concern  paid  to  application  deployment  and 

maintenance.

The proposed solution described here will attempt to address this shortcoming, by 

presenting a library designed to be intuitive and easy to use for both developer and user. 

This  library  will  have  acceptable  performance  trade-offs  especially  for  its  intended 

developer audience.

For the developer, the library API itself will be designed to make development 

fast, safe and robust. This is done through a concise and powerful API that utilizes C++ 

language features, to minimize the amount of development needed and to maximize the 

amount  of  compile-time  verification.  For  the  user,  the  self  contained  thread-based 
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(rather  than  process-based)  library  implementation  will  be  easy  to  embed  into 

applications,  with  no  setup  requirements,  permitting  the  deployment  of  easy  to  use 

parallel processing applications.

This type of library targets the following developers:

● Developers  with  moderate  parallel  processing  requirements  who  value 

development time could use this library to quickly develop parallel applications. 

The developed applications, could fall back (without deliberate user control) to 

utilize only the resources of the user's workstation when multi-node processing 

is not desired, required or possible.

● Developers and users with existing applications could use this  library to add 

parallel  processing,  permitting  the  reuse  of  existing  application  code  and 

interfaces while extending the usefulness and scalability of their applications.

● Developers who want to target their parallel algorithms at less technical users 

may use this library to build applications that are easier to use and deploy. In 

fact, the built applications would be (from the user's perspective) no different 

that a non-parallel processing capable application.

● Developers  in  any  of  these  situations  would  greatly  benefit  from using  the 

proposed programming library.

1.3 Problem Definition

This  problem has  a  few facets.  The first  issue  is  how to  make programming 
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parallel algorithms and applications, via a message passing library, easier and less error  

prone for  the  developer  (usability).  The  solution  must  be  embeddable  and  multi-

platform, so as to transparently cope with  existing desktop applications, on whatever 

platform they may be. Finally, the solution must be reasonably efficient (compared to 

other  base  line  message  passing  libraries),  so  as  to  reap  the  benefits  of  parallel 

programming. These three key issues can be further expanded:

A library is easier to use (when compared to another library) when it requires less 

time and research  to use.  The  library  interface  could  minimize  the  amount  of 

information required from the developer (especially redundant information), reducing 

the chance for programmer errors. Less code takes less time to write. The library could 

provide more compile and runtime checking, giving the developer error feedback before 

the bugs manifest themselves as difficult-to-debug output errors or mysterious program 

crashes. This reduces debugging and ultimately, development time significantly.

The library should be embeddable completely into existing applications. That is, it 

should  be  usable  in  the  developer's  existing  applications,  rather  than  forcing  the 

developer to write new applications, dedicated to the task of parallel computing. The 

applications  could  be  available  on  many  platforms,  so  the  library  must  be  multi-

platform. To further couple with the existing applications, the library should minimize 

(or eliminate) the need for management programs and setup procedures. Infrastructure 

programs such as these detract from the user's needs to simply run the core algorithms, 

and are often poorly understood and annoying. Any setup programs that are absolutely 
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required should be easy to use, perhaps part of the application, and preferably graphical 

and menu driven.

Finally,  the  library  must  be  relatively  efficient.  It  should  maintain  respectable 

scalability  for  many  problem  types  and  sizes.  If  the  library  is  too  inefficient,  and 

introduces  too  much  runtime  overhead,  the  user  may  ignore  the  offered  parallel 

solution, or perhaps demand a better one written using another library. This library will 

of course make trade offs, and certain problem types and large data sizes (and large 

processor sets)  may require other parallel  programming libraries with dedicated and 

perhaps specialized computation and communication hardware.

1.4 Research Questions

The  research  work  in  this  thesis  aims  to  design  and  implement  a  new 

programming library that will attempt to solve our stated problem:  How can parallel  

application  development  be  simplified,  permitting  the  construction  of  more  user-

friendly parallel processing applications?

We will assess the effectiveness of the proposed approach using three evaluation 

criteria: (i) programmer usability, (ii) computational performance  and (iii) application 

integration.

First,  how can the solution be made easier and less error prone? How do we 

assess  (programmer)  usability? Usability  often  is  a  subjective  metric,  and  can  be 

assessed through surveys, focus groups and other traditional forms of usability testing. 
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Focus group testing can be error prone, expensive and time consuming, so for this thesis 

a  more  objective  metric  will  be  designed.  This  metric  will  attempt  to  look  at  the 

programming  interface  of  the  newly  developed  library  and  attempt  to  assess  its 

usability, introducing further questions: How do we assess the usability of a particular  

programming interface? How do we compare the usability, error reduction and general  

programmer aid of a pair of programming interfaces?

Second, the focus of this project is not communication performance, but rather 

delivering an easy to use parallel programming library to allow parallel computing to be 

deployed in a wider array of applications. Nevertheless, efficient performance must still 

be achieved, at least for many common work loads, so as to not negate the benefits of 

parallelization and the time invested into these solutions. To maintain acceptable levels 

of  performance,  we  must  be  able  to  objectively  assess  this  efficiency.  What 

performance metrics do we use? What other libraries, algorithm types and work loads  

do  we  compare  and  test  against?  What  levels  of  performance  are  considered  

acceptable?

Finally, we must question the solution's embeddability or integration, that is, its 

ability  to  work  with  existing  application  code  and  application  deployments.  What 

features are required to make the library most embeddable? What platforms must be  

supported? How do we minimize external  and cumbersome infrastructure software?  

What  techniques  can  be  used  to  infer  network  and  other  configuration  options? 

Answering these questions will help the developer integrate the library seamlessly with 
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their existing code, letting users leverage parallel computing with their existing, familiar 

applications.  To  supplement  the  previous  two  evaluation  criteria,  we  will  provide 

anecdotal evidence demonstrating the effective integration capabilities of the proposed 

approach.

The answers to these questions will then collectively direct us to an answer to the 

original, primary question:  How can parallel application development be made easier  

for the application developer, who can then utilize parallel processing in user-friendly  

applications?

1.5 Thesis Statement

The resulting work of this thesis will be the creation and assessment of a new, 

parallel programming library. This library, although not as high-performance as other 

well established libraries, will be decidedly more user-friendly, allowing the embedding 

of the library into existing applications, making for a more seamless user experience.

By utilizing various C++ programming language features, the library's interface 

will  be easier  to  use  (when  compared  to  typical  C  or  C++  parallel  programming 

libraries) and by inferring redundant information automatically thereby being less prone 

to programming errors. The library's interface will be designed with object-orientation 

in mind, allowing it to be embedded naturally into larger graphical applications.

Second,  to  show  that  the  library  performs  within  acceptable  performance 

characteristics  for  a  variety  of  common  work  loads,  various  objective  tests  and 
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benchmarks will be performed. This will be done to show that the various novel features 

introduced by the library do not have an overly detrimental effect on performance, when 

compared to more established, performance-focused competitors.

It will be shown that the newly developed library is more seamless to embed into 

existing  application  than  existing  libraries  via:  various  network  auto-detection 

techniques; elimination of infrastructure programs; and generally less configuration and 

maintenance requirements on the user.

1.6 Thesis Objectives

1.6.1 Grand Objective

The grand objective of this thesis is to create a new software programming library 

for parallel application development, that is easier to use (program with), embed into 

existing applications and deploy to users in a seamless fashion when compared to major, 

existing parallel programming libraries. The newly created library must also be efficient 

for  some work loads, allowing the developer to fully realize the  benefits of parallel 

processing.

1.6.2 Method Objectives

The experimental methods will attempt to objectively assess the thesis answers to 

the  various  research  questions.  By  showing  measurable  results,  the  work  can,  by 

answering these questions, show that the grand objectives have been achieved.
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For programmer usability, deterministic code analysis techniques will be used to 

show how algorithms implemented for competing systems can vary in complexity and 

execution.  Computational performance  will  be  measured  along  many  setups  and 

configurations,  hopefully  painting  a  clear  picture  of  the  various  performance 

characteristics  of  the  competing  packages.  Finally,  application  integration  will  be 

demonstrated  in  one real-world  application,  with  accompanying  analysis  and 

discussion.

1.6.3 Novelty and Contributions

The  main  contribution  of  this  work  is  the  design,  development  and 

implementation of a new, simpler parallel programming library that provides adequate 

performance (efficiency) for a useful range of parallel programming problems.

The novelty of  this  parallel  programming library  is  that  it  will  be more  user-

friendly than other existing libraries. This novelty has two major facets: (i) programmer-

usability and productivity and (ii) application integration. Together they permit a wider 

range of programmers  to utilize parallel  programming in a wider  range of new and 

existing  applications.  This  goal,  user-friendliness,  is  unique  among  current  parallel 

programming libraries.

The result of the novelty is that parallel programming can be embedded into more 

applications, especially desktop applications. The user base and use cases for parallel 

applications can be increased, resulting in more efficient use of resources in a variety of 
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applications. With increased efficiency, work can be performed in less time and larger 

problems can be tackled.

1.7 Thesis Organization

The thesis is organized as follows.

Chapter 1 contained an overview and introduction to the thesis topics, including 

its goals and expected contributions.

Chapter  2  contains  a  background  overview  of  parallel  programming,  a  short 

history, its goals and various software and hardware trends. This chapter also outlines 

the current state of the art and various issues with certain key technologies.

Chapter 3 gives a background overview and analysis of the C++ programming 

language. This chapter outlines some of the features of C++ that justify its choice for 

the work of this thesis.

Chapter 4 gives a background overview of the Scopira programming library, a 

library  that this  thesis  work  utilizes  for  various  (non-parallel  programming)  utility 

functions. This thesis work is often combined with the Scopira programming library to 

build a wide range of applications.

Chapter 5 outlines the design goals and considerations of the thesis work. This 

covers both the design of the application programming interfaces as well as an overview 

of the networking/threading back-end implementations.

Chapter  6  outlines  the  experiments  that  were  conducted.  These  experiments 
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provide objective analysis  of the thesis work, assigning various metrics to the work 

along its various thesis goals.

Chapter  7  presents  the  results  of  the  experiments.  An analysis  is  provided to 

summarize the results, with some discussion.

Chapter 8 summarizes the complete thesis work, its contributions and  discusses 

some directions for future work.

Finally, appendices and a bibliography are also included.
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2 Background: Parallel Programming

2.1 Introduction

Individual computer processors have limits to their performance, and only through 

parallel programming can scientific and high performance developers scale their work 

loads. These limits are both practical (there is an absolute limit to processor speeds) and 

financial (the cost-performance ratio tends to grow exponentially with processor speed), 

forcing users to grow the number of processors (rather than just their speed), if they 

want to achieve practical scalability.

Parallel programs, through this scalability, execute faster than those constrained to 

single processors. This has many user benefits. Users can get their results faster, which 

results  in  less  wait  time.  In  time-constrained  environments,  new  algorithm options 
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become available. Users can process more data, giving  more accurate results. Finally, 

globally deployed parallel applications (like the SETI@home [5][60] or Folding@home 

[64] projects) can make the seemingly impossible problems possible.

At first, parallel processing was the domain of expensive super computers, with 

many processors and expensive interconnects and infrastructure. However, over time, 

economies  of  scale  have  helped  common  consumer  processors  to,  when  connected 

together appropriately, reach impressive throughputs usable for a growing number of 

workloads, for a fraction of the price of specialized hardware. Users coupled common 

off the shelf (COTS) hardware with free UNIX-like operating systems (usually Linux) 

to form Beowulf [90][103] clusters. Less dedicated deployments are sometimes called a 

cluster  or  network  of  workstations  (COW  or  NOW,  respectively).  These  clusters 

brought parallel computing to many new groups of people, spurring  new interest in 

parallel computing research and applications.

 Over time, as the economics of scale continued to push consumer processors to 

impressive new speeds, conventional super computer manufacturers such as Cray [25] 

and SGI [98] watched more and more of their business go to Beowulf-specializing or 

regular computer vendors. COTS hardware and free software simply provided a much 

better value (in terms of processing power per cost) for many problems and domains.

The next large wave of parallel computing moved to the desktop market itself. 

Moore's law (which made predications concerning the ever increasing capabilities of 

processors  [70][71])  may  have  reached  its  limit,  prompting  large,  mass  market 
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processor vendors such as Intel [53] and AMD [1] to sell processors with multiple cores 

(processing  units)  in  each  processor,  effectively  bringing  parallel  computing  to  the 

desktop.  Now,  common  compute  intensive  consumer  applications  require  parallel 

processing (at the very least, non-distributed parallel processing usually via operating 

system threads) should they want to take advantage of all the processing power.

Programmers have come up with a variety of tools to help tackle the challenge of 

developing parallel  programs.  These solutions  can include parallel-specific  language 

extensions, or operating system enhancements, or new code libraries. This chapter will 

outline some of the more prevalent packages.

2.2 Design and Organization

Parallel programming and distributed programming are two basic approaches for 

achieving concurrency in software. Parallel programming assigns work to two or more 

processors within a single or virtual computer. A dedicated cluster of compute nodes is 

considered a  virtual  computer  according to  this  definition.  Distributed programming 

assigns work to two or more processors, which usually reside on different computers. 

These computers may differ by location, hardware architecture and operating system 

configuration, resulting in a more heterogeneous configuration.

The parallel programming approach is concerned with dedicating processors (and 

their  network interconnections)  to  solve mostly compute-intensive problems,  and as 

such  is  more  beneficial  to  the  demanding  scientific  programmer.  The  distributed 
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programming approach is more ad-hoc, and, although it could be used for  some  high 

performance computing, it is better suited for solving many more general tasks. These 

tasks include the building of distributed applications that must utilize the resources of 

other machines to perform a task. These resources may include specialized hardware 

(such as printers and scanners), databases, file repositories and dedicated terminals.

Flynn  [31][36] introduced  a classification  scheme  for  parallel  programs  and 

computers.  His  key  classes  of  parallel  machines  were  SIMD  (Single  Instruction, 

Multiple  Data)  and MIMD (Multiple  Instruction,  Multiple  Data).  SIMD applies  the 

same algorithm  to different  pieces  of  data  (sometimes  known as  “divide  by  data”) 

across processors, while MIMD assigns different tasks or algorithms (and different data) 

to each processor (sometimes known as “divide by task”).

SIMD lends itself more to scientific, and thus parallel programming, while MIMD 

and  its  division  of  tasks  (especially  at  less  granular  scales)  is  more  analogous  to 

distributed programming. The dividing line between both schemes is not distinct. The 

schemes often  overlap, resulting in hybrid systems. For example, an application could 

use distributed concepts for setup and overall application design while utilizing parallel 

programming for the high performance work.

2.2.1 Design Methodology

Parallel  programs, with their  many benefits,  do come with a cost. These costs 

include  additional  challenges  and  considerations  during  program  design,  an 
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undoubtedly longer debugging process and finally a more involved deployment process.

The design process of parallel programs includes issues such as: decomposition, 

communication and synchronization.

Decomposition is the process of dividing the problem and its solution into parts. 

Often in parallel programs, the most scalable technique is to decompose the problem by 

data. Different parts of the data are sent to different processes that then all proceed to 

apply the same algorithm in parallel. The specifics on how to decompose the data could 

also  have  many  options,  each  with  different  performance  results.  For  example,  the 

division of a numeric matrix could be done by rows, columns or both. More unbalanced 

structures  require  other  considerations.  The  problem  may  also  be  decomposed  by 

logical/functional steps, for example: input, searching, calculating, sorting, output, etc. 

Finally, for distributed applications, the problem must be decomposed by resource, for 

example: printer, databases and file repositories.

Communication issues arise in deciding how these decomposed solution parts will 

interact.  Do the  parts  share  memory?  Which  pieces  of  the  partial  solution  do  they 

exchange, and in what order? Who (which processor) manages the whole process? Are 

communications  between  senders  and  receivers  synchronized? Are  there  collective 

broadcast operations?  These issues have to be considered when designing a parallel 

program.

Synchronization issues involve the coordination, scheduling and operating order 

of the various processors. Do all the parts start at the same time, or must they be primed 
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individually?  What  happens  when  there  is  resource  contention?  What  happens  if  a 

processor finishes its part before all the others (very typical in heterogeneous clusters 

and with irregularly structured data)?  Are there algorithm dependencies that must be 

considered?  Does the processor wait (and waste time being idle) or does it get more 

work? Who assigns this work? All these concerns must be considered when maximizing 

the efficiency of a particular parallel program.

2.2.2 Programming Challenges

Parallel  programming  also  brings  with  it  a  host  of  new  challenges  to  the 

development process. The concurrent interaction of many tasks brings a host of new and 

subtle issues.

Data race conditions occur when multiple tasks access a shared data resource, and 

the  results  depend  on  the  order  of  access.  The  scheduling  and  interaction  of  tasks 

depends on the non-deterministic  (from the software's  view)  behaviour of operating 

system process scheduling, network traffic, etc. Yet the application itself must mitigate 

these factors to retain determinism within itself.  To resolve data race conditions, the 

application must enforce rules of access, such as enforcing a domain-specific access 

order or simply using mutual exclusion constructs to serialize access to shared  data.

Indefinite postponement occurs when a task waits indefinitely on some event that 

never occurs. This is a fundamental development concern as potentially all data receive 

operations in a task are suspect. Programming bugs may cause a sending task to miss 
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sending a required message, branch to some other code path, or crash and cease to exist. 

Entire  computer nodes may crash due to some hardware,  operating system or other 

software bugs.

Deadlock is a  subtler problem related to indefinite postponement. Two or more 

tasks may be so intertwined in their communication that they end up waiting for events 

from each other. Since they are all in a waiting state, none of the tasks resolves the 

deadlock.

Communication concerns  are  also  introduced  by  parallel  programs.  Will  the 

program  use  shared  memory  or  message  passing?  Shared  memory  programs  have 

seemingly simpler communication models, but they still must be aware of data race, 

indefinite postponement and deadlock pitfalls. On certain architectures (such as MOSIX 

[11][72] and SGI's NUMA [19]), not all memory accesses have the same access times, 

and programs must try to localize their working data set. Message passing algorithms 

must  also  be  concerned  with  indefinite  postponement  and  deadlocks.  Furthermore, 

messages may be lost, delayed or interrupted; all challenges that must be met.

All these issues (in addition to the regular challenges of algorithm development) 

could manifest as bugs in the software, leading to crashed, frozen or otherwise unable to 

function software instances. When this occurs, at the very least, users should be able to 

restart or continue the program without leaving any persistent data in an unused state or 

leaving  any  stray  task  instances  on  remote  nodes  (“zombies,”  in  operating  system 

parlance). Ideally, the program should be built with fault tolerance in mind and continue 
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to run. However, fault tolerance comes with a large development cost,  potential run-

time overhead and is usually not necessary for many applications.

Specialized  applications  running  on  untrusted  nodes  also  have  other 

considerations.  This  approach  is  popular  with  volunteer  computing applications 

(projects  where anyone can volunteer  processor time) such as  SETI@home [5] and 

other applications such as those based on the BOINC [6] software package. In addition 

to  fault  tolerance  requirements  (nodes  abruptly  disconnecting  is  the  norm,  not  the 

exception),  these applications must also double check their  results to protect against 

malfunctioning, or more probably, malicious nodes. Malicious nodes may be motivated 

by  sabotage,  curiosity  and/or  the  urge  to  deceptively  accelerate  up  through  the 

contribution charts (in cases where rewards for participation are offered). Checking a 

node's work commonly involves sending its work unit to another node (or two, in the 

case of triple checking). The comparisons must have some tolerances, to account for 

marginal differences in results due to different processor architectures. This can be done 

on all work units, a random subset, or a random subset that prefers to check new nodes' 

work (as a form of trust establishment). All this requires more development work and 

possibly much more runtime overhead.

Finally, all parallel programs and deployments have limits to their scalability. At a 

certain  point,  adding  more  processors  will  not  give  any  more  meaningful  speedup 

(Amdahl's law  [4]). By definition, only a fraction of a parallel program is able to be 

parallelized. The sequential parts, the cost of communication and synchronization will 
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eventually  dominate the application's runtime eliminating the benefits of adding any 

more processors. Certain subsets of “embarrassingly parallel” applications can avoid 

this up to a large numbers of processors, but few “interesting” problems are in this class. 

These  applications  have  no  intercommunication  requirements  and  are  able  to  scale 

globally, such as SETI@home and Folding@home [6]. 

2.2.3 Organizational Models

The  programmer  must  also  decide  how best  to  organize  and interconnect  the 

various task processors in the software. Certain types of algorithms lend themselves to 

certain organizational models. Some of these organizational models (design patterns) 

are presented here.

In the delegation (boss-worker, master-slave) model (Figure 1 (a)), one process is 

the boss, while one or more processes are the workers. The workers do nothing but pull 

work from the boss and return results. The boss is responsible for distributing work, 

controlling overall application flow and terminating the workers. The boss does not do 

any computational work itself  and simply sits  idle (i.e.  does not consume processor 

resources),  waiting  for  requests  and results  from the workers.  The boss  may create 

workers as needed, or may keep a stable of workers throughout all jobs (this minimizes 

the cost of worker creation). Genetic algorithms [61] are often implemented using this 

model.
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Figure 1: A sample of program organizational models. Arrows indicate data flow.

The blackboard model can be considered a variation of the delegation model. In 

this  model,  there  is  no  boss  process,  but  rather  a  collection  of  mostly  autonomous 

workers who communicate via a common, shared data “blackboard”. Workers, when 

ready,  access  the  blackboard,  determine  what  they  should  do,  and return  later  with 

results and new units of work. This model is common in autonomous agent systems.

In the peer-to-peer model (Figure 1 (b)), all the processes are more or less equal, 

each doing the  same work.  This  implementation is  the  closest  to  a  pure SIMD  (or 
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MIMD) implementation. Each worker in this model performs the same algorithm on 

their  own  subset  of  the  dataset,  exchanging  data  at  various  intervals.  One  worker 

(usually the first, initial process), must create the others, parcel out data and combine 

the results. This little bit of sequential overhead cannot be avoided and does not detract 

from the overall algorithm design. Image processing often lends itself to this model.

In the pipeline model (Figure 1 (c)), each process or thread handles one step in a 

multi-step process. This is an example of dividing by task, rather than by data, and can 

be considered a  type of  MIMD implementation. Nodes may be assigned tasks due to 

their unique resources (for example, database stores) or specialized hardware (such as 

some data  acquisition instrument)  or powerful  processor configuration.  The pipeline 

model, due to its serial nature, is highly prone to developing bottlenecks. One node will 

be the limiting factor in the chain,  decreasing the efficiency of the whole application. 

This presents a load balancing challenge to the developer, who cannot simply add more 

processors. The pipeline model is often used in distributed applications, where nodes 

are  brought  together  for  their  specialized  resources,  rather  than  just  processor  time 

contributions.

The producer-consumer model can be considered a subset of the pipeline model. 

One task produces data (gathered from some source) to be processed by the consumer. 

This is often used in client-server configurations for distributed applications.

Finally, the models can be combined into a  composition (Figure  1 (d)). This is 

often the result of combining algorithms, either sequentially or in a nested (caller-callee) 
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fashion. This model comes in many configurations.

2.3 Standard Libraries

Many modern operating systems contain multi-tasking and multi-programming 

features.  These  features  may  be  utilized  by  any  program,  without  the  need  for 

specialized libraries or configurations. This section will discuss some of these built-in 

features that many operating system provide.

2.3.1 Multiple Single Instances

The  most  basic  form  of  multi-processing  is  starting  and  executing  multiple 

instances  of  the  same program,  but  with different  data,  on one  host  computer.  The 

instances themselves work in isolation and do not communicate with each other. The 

programs are SIMD and are divided by data. Each instance either has different data or is 

running the same data with different parameters. They usually do not process different 

parts of the same data (as this would require inter-instance communication). When these 

tasks are executed on a multi-processor computer, then the total work performed often 

scales  linearly  (assuming  no  other  bottlenecks)  with  the  number  of  processes  run 

simultaneously, up to the number of processors.

This simplistic technique has drawbacks. Single work tasks are not split up, and 

the individual jobs themselves are not performed in parallel.  As there is  application 

specific no process manager, there is no automated load balancing to optimize resource 

utilization.  The  user,  in  fact,  must  often  manage  the  processes  manually,  a  tedious 

24



Chapter 2: Background: Parallel Programming

process that can be somewhat helped by the use of shell scripts.

This technique requires a modern, preemptive multi-tasking operating system. All 

desktop computers sold today include operating systems with this capability, including 

Microsoft  Windows,  Apple's  OS X and Linux.  This  capability  allows  the  operating 

system itself to preempt a process and take back control of the processor. The operating 

system then gives control to another process, time slicing the processor's time between 

all running processes. This gives the impression (to the processes) that they are running 

simultaneously. On multi-processor computers, they actual do execute simultaneously, 

resulting in a work load speed-up.

Certain  operating  systems  use  cooperative multitasking.  These  include  older 

desktop operating systems (such as Microsoft Windows 3, or Apple's System 9) and 

many  embedded  operating  systems,  such  as  those  found  in  cellular  phones.  These 

operating systems require the process itself to explicitly yield control of the processor. 

Such operating systems, by design, lack the capabilities to utilize multiple processors 

and provide desktop parallelism.

2.3.2 Threads

Threads are an important feature of a preemptive, multi-tasking operating system. 

They  are  standard  on  all  modern,  computer  operating  systems,  and  provide  a 

lightweight and powerful mechanism for achieving parallelism within a single program 

instance. Under UNIX and UNIX-like operating systems, the POSIX threads API [21] is 
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often  used,  while  Microsoft  Windows  has  its  own  API.  There  exist  many other 

interfaces  over  these interfaces,  such as  Boost  Threads  [16][57] (and soon standard

C++),  Qt  [14][87] and  Scopira  Threads  (Section  4.1.4).  These  all  help  in  reducing 

typical thread programming errors as well as provide a generic interface for writing 

portable programs.

A  thread  is  a  scheduled  operating  system  execution  stream.  Typically,  all 

processes  have  one  main  thread  and  an  address  space.  Processes  each contain  an 

instruction pointer, stack, and some state registers.  Additional threads are sometimes 

known as lightweight processes, as they are much less resource intensive than multiple 

processes  but  still  are  scheduled  like  normal  processes,  and  (on  multi-processor 

hardware) actually run concurrently with other threads in the same process and memory 

space.

Threads have their own stacks but share the same address space, global variables, 

and dynamic memory heap with other threads. There is only one instance of the address 

space  among  the  threads  in  the  same  process:  changes  in  this address  space  are 

immediately  visible  to  other  threads.  This  makes  intercommunication  between  the 

threads fast, especially for shared data, which does not need to be explicitly transferred 

or duplicated at all. In some ways, this also makes them easier to program but this is not 

always the case, as described below.

Threads may “communicate” with each other by placing messages and data in 

some  shared  data  structure.  Access  to  shared  memory  must  be  synchronized  and 
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sequenced  so  as  to  prevent  race  conditions  that  may  occur  if  one  thread  reads  the 

memory before another associated thread has finished writing it. For this, the thread API 

will provide a collection of synchronization primitives that threads can use to coordinate 

access. These typically include:

Mutex (mutual exclusion or critical section) objects provide the concept of a lock, 

to protect and sequence shared data access. A mutex can either be unlocked or locked by 

a thread. When another thread attempts to  lock a mutex, it will block (wait) until the 

existing thread unlocks (releases) the lock. Alternatively, a thread may timeout waiting 

for a lock, and may try again (polling) or perform some other action. A thread with an 

active  lock  may  relock  the  same  mutex:  this  aids  in  the  development  of  certain 

(recursive) algorithms.

A condition variable provides a method of thread signaling. One or more threads 

may  wait on  a  condition,  while  other  threads  may  signal  them.  The  alternative, 

constantly polling a mutex, is both computationally wasteful and inaccurate, as there is 

some  latency  between  lock  attempts  during  which  the  receiving  thread  will  never 

operate on messages. Conditions are often coupled mutexes. A wait operation is used to 

unlock a mutex and wait for the condition to be signaled (and re-acquire the lock on 

receiving the signal). This is a common programming pattern as a condition is often 

used to signal the arrival of some data, which is then stored in some shared variable.

Finally,  read/write  locks provide  a  specialized  variant  of  mutexes.  Read/write 

locks allow either one writer exclusive control of a resource, or many readers to share 
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it.  This  increases concurrency over standard mutexes,  as readers are  now no longer 

forced to wastefully wait for each other to release locks. Obviously, writers and readers 

cannot share the resource at the same time. Read/write locks can be implemented using 

normal mutexes. However native read/write locks are preferred, as they are able to solve 

subtle scheduling and contention issues that may not possible with standard mutexes.

For certain classes of simpler communication problems, some libraries (such as 

QtConcurrent [88]) provide some additional concepts around threads that do not require 

the use of the previous  primitives.  They include the concept  of  futures [45],  which 

represent the results of some future operation. The main thread spawns a function in the 

background, is given a future token and uses the token to poll and, when ready, retrieve 

results  from  the  completed  background  thread.  Primitives  for  the  map-reduce  [27] 

functional paradigm may also be provided. If an algorithm can be broken down into 

mappers (data converters) and reducers (consolidators/mergers of converted data), then 

the framework can take care of setting up and applying the user-provided functions until 

algorithm completion. Google [40] is a major proponent of this technique used in their 

search engine and other applications.

Despite the availability of these primitives, concurrent programming with threads 

can  still  lead  to  many  subtle  and  difficult  to  debug  programming  errors.  This  is 

especially true for the inexperienced programmer,  who may be tasked to implement 

complex numerical or other algorithms.

Threads  also  have some disadvantages.  Any thread that crashes or faults,  may 
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bring  down the  whole  process  and all  the  other  threads  in  it.  This  makes  threaded 

applications,  in some sense,  less fault  tolerant.  All threads have complete and equal 

access to the address space, therefor requiring all threads to be trusted and preventing 

any sandboxes of untrusted or foreign code.

Programs that do not want or cannot have (because of lack system support) native, 

preemptive  threads,  may use  pseudo-threads (or  user-level  threads).  Pseudo-threads 

may be implemented in the operating system or in the application itself. These threads 

only return control back to the scheduler when they either explicitly yield control or call 

an  I/O  or  other  blocking  function  (which  in  turn  yields  control).  After  control  is 

returned,  another  thread  is  given  control.  Obviously,  these  threads  (within  a  single 

process)  cannot  utilize  multiple  processors,  as  they  share  only  one  actual  operating 

system thread. Pseudo-threads are particularly useful if the thread programming model 

is desired, for example in I/O programming, but preemption and multi-processing is not 

required. It is particularly useful on smaller (e.g. embedded) platforms that do not have 

a preemptive multi-tasking operating system or capable processor, such as those found 

in  smaller  devices  such  as  cellular  phones.  Many  runtimes  or  virtual  machines  of 

interpreted  languages  also  start  with  a  pseudo-thread  model,  due  to  its  portability, 

simplicity and low thread switching overhead.

2.3.3 Interprocess Communication

Many  operating  systems  provide  additional  methods  for  interprocess 
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communication.  This  section  will  give  a  brief  overview of  the  methods  commonly 

provided in UNIX and UNIX-like operating systems (such as Linux).

Pipes are  specialized  file-like  objects  that  allow  two  related  processes  to 

communicate. Pairs of processes may be chained from the command shell by the user 

when they are launched, or with the popen system call. Pipes are basic, untyped binary 

streams, although text is usually sent.

A FIFO (first-in, first-out) is a bidirectional pipe offered by a program with an on-

disk “name”. This allows unrelated processes to exchange data. The mkfifo system call 

may be used to create them.

UNIX-Domain Sockets are similar to FIFOs in that they are local to one host and 

have an on-disk name or handle. However, they offer a more featured API than simply a 

plain file stream, utilizing the socket interface that is also used for TCP/IP and UDP/IP. 

This way, they can be thought of as an efficient, local machine-only network socket 

system.

System  V  IPC is  a  collection  of  interprocess  communication  primitives  that 

includes: messages queues, shared memory, and semaphores. Message queues are lists 

of messages (each with a fixed maximum size) for a receiver, where order is preserved. 

Shared memory allows processes to create and share segments of memory, where all 

may examine and change the contents  of the shared segment. Finally, semaphores are 

counters  (with  special  operations  defined  on  them)  that  are  used  to  provide 

synchronized access to shared data objects across multiple processes.
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These  techniques,  although  functional  and  fast,  tend  not  to  be  popular  with 

parallel algorithm developers. For developers who go to the trouble of partitioning their 

algorithms into multiple processes, there exist better library-based solutions for message 

passing.  Such  libraries  (discussed in  the next  section)  bring many benefits  over  the 

esoteric and platform-specific APIs discussed here, including enhanced ease of use via a 

simpler API. They are often more tuned for group and numerical computing and multi-

platform support and data manipulation.

2.3.4 TCP/IP

The  Transmission  Control  Protocol/Internet  Protocol  (TCP/IP)  is  one  of  the 

standard intercommunication protocols of the Internet and of many local area networks. 

It is a globally deployed networking standard that is understood by the vast majority of 

networked devices. All modern operating systems provide programming interfaces for 

communicating with TCP/IP. The TCP/IP protocol provides an error free, ordered and 

reliable  network  stream.  Its  sibling  protocol,  the  User  Datagram  Protocol/Internet 

Protocol (UDP/IP)  provides  connection-less  datagram  messaging,  which  does  not 

guarantee arrival or delivery order, and as such is more efficient for applications that do 

not require these guarantees.

Programmers  may  use  TCP/IP directly  to  do  cluster  and  parallel  computing; 

however,  it  only  provides  a  reliable,  bidirectional,  binary  data  pipe  between  two 

processes.  Programmers  themselves  therefore  must  manage  how  their  objects  get 
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transferred over this binary pipe, including connection setup and maintenance, message 

signaling/framing,  message  routing  (if  not  direct),  and  data  marshaling.  Parallel 

application programmers are often better off using a messaging passing library, which 

performs all theses functions in a well tested and standard manner. Message passing 

libraries may also transparently utilize other transports, such as those tuned for local 

host  communication  or  on  specialized  communication  hardware,  further  increasing 

communication efficiency in certain cases.

2.4 Message Passing Libraries

A message passing library is a software library that provides an API for sending 

and receiving messages, and possibly other auxiliary functions. These libraries provide 

several benefits over operating system specific libraries. A platform independent API 

does not lock the programmer  into one operating system, and provides data collection 

and translation (marshaling) functions for transferring data between different computer 

architectures. These libraries are able to adapt to various communication requirements 

all  behind  the  same API,  such  as  using  a  thread-implementation  for  within-process 

communication or network sockets for basic inter-host communication.  Such a library 

also  performs  many  of  the  common  setup  and  maintenance  functions  required  for 

cluster computing, removing this task from the programmer. Finally, the API may be 

better  tuned for  numerical  computing,  increasing  programmer  productivity  as  many 

common functions do not need to be redeveloped.
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2.4.1 MPI

The Message Passing Interface (MPI) [68][99] is perhaps the de facto standard in 

message passing libraries. It is an API standard  [73][74] defined by a committee,  the 

MPI Forum. There exists free (such as MPICH  [42] and LAM [20]) and commercial 

(such  as  Scali/Platform  MPI  [84])  implementations  as  well  as  specialized 

implementations (such as USFMPI  [22] which has a threaded implementation). Some 

implementations include optimizations for specific communication hardware, such as 

Infiniband  [51].  The  specification  is  language  independent  with  C  and  Fortran 

implementations being the most common. The C++ implementation tends to often be 

ignored by C++ programmers, as it contains only minor differences over the C version 

and shies away from using more ambitious C++ features.

The standard is  designed for communication for both workstation clusters and 

specialized  parallel  processing  super  computers.  The  flexible  API  contains  many 

constructs for dealing with a variety of communication types (such as broadcasting, 

scattering,  and  gathering)  and  striped  array  configurations,  permitting  library 

implementation optimization opportunities. The plethora of options can sometimes be 

confusing and error-prone, but are necessary for completeness.

The  popularity,  completeness,  and  ubiquity  of  the  MPI  standard  and  its 

implementations  makes  it  a  solid  foundation  on  which  to  build  parallel  processing 

applications.
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2.4.2 MPI (C++ API)

The MPI standard provides a C++ version of the API potentially useful for C++ 

programmers. Although enticing for C++ programmers, this API is a basic port of the C 

API.  It  converts  some  core  MPI  data  types  (and  their  functions)  to  objects  (and 

methods), but still retains a very C-centric approach to pointers and numeric arrays. It is 

rather  conservative  in  its  use  of  C++  features,  ignoring  such  facilities  as  generic 

programming or object serialization. C++ programmers may sacrifice the few features 

that the C++ MPI API does provide and simply use the C API, as it affords them greater 

source code compatibility with existing C algorithms.

2.4.3 PVM

PVM,  Parallel Virtual Machine [37][85], is a software package for the parallel 

networking of computers. It permits a group of processes to cooperate on a network (via 

message passing) to solve problems in parallel. It includes an API for message passing, 

process management and fault tolerance (as well as other services), a multi-platform 

implementation and management software.

PVM  supports  many  platforms and  enables the  connection  of  dissimilar 

computers to form heterogeneous clusters. The PVM implementation takes care of data 

marshaling and otherwise hiding platform differences. This encourages users to pool all 

available  computational  hosts  together,  increasing  performance  and  efficiency. 

Programs are free to use platform-specific optimizations, however, when they run on 
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preferred hardware.

Unlike MPI, PVM has one primary implementation. This focuses the community 

and testing on one package,  at  the risk of diversity,  specialization,  and optimization 

issues. PVM, via its process manager programs permits processes (if so configured) to 

join  and  leave  the  system  at  will.  This  tends  to  permit  more  ad-hoc  use,  and  is 

particularly useful for small to medium sized clusters..

2.4.4 Charm++

Charm++  [65] is  a  C++-based  object-oriented  parallel  programming  library 

developed by the Parallel Programming  Group at the University of Illinois based on 

Charm [35][56]. It aims to enhance C++ programmer productivity yet still retain good 

performance. Charm++ is available on most desktop and workstation platforms and also 

includes  support  for  many  super  computing  architectures  such  as:  BlueGene, 

Origin2000, and various Cray systems.

Charm++ programs and algorithms are decomposed into a number of cooperating 

objects  called  chares (concurrent  objects)  that communicate  with  other  chares  via 

messages  (communication  objects).  Processes  are  dormant  and only awakened  (and 

assigned  to  a  processor) when  messages  arrive.  This  delayed  scheduling  approach 

minimizes scheduler use and complexity. Load balancing, in general, is dynamic and 

adaptable but static load assignments are also available.

Charm++  uses  its  own  Interface  Description  Language  (IDL)  to  define  the 
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messages remote objects may receive. Given a user supplied object specification in this 

IDL, Charm++ will produce various standard C++ files that are subsequently integrated 

with the application. Although cumbersome at first, this permits programmers to treat 

remote objects almost as if they are local objects via an asynchronous CORBA-like [96] 

calling system, as Charm++ marshals and packages the calls as message objects and 

sends them to their destination.

Charm++ also includes Adaptive MPI (AMPI) an implementation of a significant 

subset of MPI 1.1 over the Charm++ system. This permits many MPI programs to be 

used and tested on Charm++ without significant change. The system reuses the dynamic 

and adaptive nature of Charm to bring load balancing to MPI applications, giving MPI 

applications additional deployment options.

Charm++ shares many technical similarities with the work described in the thesis, 

but  with  significant  differences  in  design  goals.  For  example,  developer 

usability/application  integration  is  not  a  focus  of  the  Charm++ library,  resulting  in 

cumbersome deployments and integration approach. In particular, Charm++'s use of an 

IDL to specify and formalize messages complicates embeddability and integration by 

requiring that the developer learn a new language and use additional utilities during the 

build process.

2.4.5 CORBA

CORBA  [96] is  a  standard  for  cross-platform  object-oriented  programming 
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defined by the Object Management Group [76]. It permits the programmer to distribute 

objects within a program to different processes, usually on different hosts connected via 

a network. The programmer is then able to interact with these objects, almost as if they 

were typical, in-process objects.

In  practice,  the  interaction  with  remote  objects  is  not  completely  transparent. 

There are some significant time commitments required for the design and development 

of the distributed objects. After the objects are instantiated, the programmer must also 

be aware of many limitations when dealing with the remote objects. The remote objects 

may  reside  in  different  processes  and  thus  in  different  memory  spaces,  so  the 

programmer  may  not  use  traditional  pointers  to  interact  with  them.  This  limits  the 

interaction with remote objects to what is defined by the objects specification – usually 

to public method calls only. Performance (latency and total throughput) with remote 

objects is also limited by the network. Finally, method calls on remote objects can fail in 

drastically  different  ways  from  in-process  objects,  usually  because  of  network, 

hardware or software issues. The programmer must account for this by designing the 

application to be robust and able to account for catastrophic failures in core, common 

objects.  Using  exceptions,  an  error  handling  feature  provided  by  many  languages, 

including C++ (but  not  C or Fortran),  developers  can make their  applications  more 

robust, but without the clutter of error checking tests after each remote method call.

CORBA is  a  standard  with  many  different  implementations,  some  tuned  to 

different deployment environments and priorities. The objects themselves are specified 
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in a language-neutral IDL, which is later compiled into target programming languages. 

The  generated  code  provides  data  marshaling  (gathering  and  conversion  of  data 

parameters for network transport) for the clients, and skeleton implementations to aid in 

implementing the objects on the server.

Pointers  within  one  processes'  address  space,  a  typical  method  of  retaining  a 

handle  to object  instances,  cannot  be used in  distributed applications.  CORBA uses 

opaque Interoperable Object References (IORs) as handles to distributed objects within 

a network. These handles contain all the information needed (such as host address and 

port) to access and use a distributed object instance.

CORBA provides facilities to convert well known names or signatures into IORs. 

This  allows  applications  to  find  their  remote  components  more  easily,  without  the 

manual  propagation  of  IORs.  The  basic  name service  provides  basic  name to  IOR 

resolution.  This service is  contextual and allows the grouping of similar names into 

contexts with a scalable recursive look up. A more dynamic and decentralized trading 

service learns  and discovers objects  within a  network.  Objects  advertise  (“exports”) 

services while clients search for (“imports”) services. The trading service introduces 

clients and services by matching their service requests and advertisements.

Distributed computing (as encouraged by CORBA and similar technologies) has 

notably different goals than parallel programming message passing libraries, which are 

designed for groups of processes to quickly and efficiently exchange loosely defined, 

ad-hoc data with each other. Distributed computing is useful for connecting and sharing 
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resources  (as  in  the  consumer-producer  or  pipeline  program  organization  models) 

spread over different machines, connected via a network and achieves this flexibility 

through higher  runtime overhead.  Distributed computing may also be used to  unify 

objects or application pieces developed by different programming teams or at different 

times.  Distributed  computing  is  also  well  adapted  to  agent  programming,  which 

sometimes  requires the  ad-hoc,  multi-platform,  multi-languages  facilities  that  are 

provided.

2.5 Task Based Libraries

Task  based  libraries  present  a  different  approach  to  parallelism  than  that  of 

message passing libraries. In a message passing library, the programmer defines both 

the tasks and the intercommunication sequences between them. In a task based library, 

the  programmer  simply  provides  the  tasks,  which  are  assumed to  have  a  simplistic 

input-output processing model. The library then performs all the resource management, 

data partitioning and transport, and scheduling for the programmer.

The message passing library approach is more flexible and is able to handle more 

communication models at the cost additional complexity. For algorithms that can be 

decomposed  to  independent  tasks  however,  a  purely  task  based  approach  may  be 

beneficial as it requires less library-specific setup and communication code. Task based 

libraries and approaches can also be layered (and used) over message passing libraries. 

Some examples of task based libraries are now discussed.
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2.5.1 BOINC

The  Berkeley  Open  Infrastructure  for  Network  Computing  (BOINC)  [6] 

middleware package is a collection of software to aid in the building and distribution of 

volunteer and grid computing projects. These types of projects involve large numbers of 

nodes (potentially millions) with no inter-node communication. BOINC was originally 

part of the SETI@home [5] project but it broke out into its own project when its utility 

in other work became apparent.

BOINC provides a programmer API for job and results submissions, data transfer, 

software  for  job  management,  account  management  and  web  site  administration. 

Contribution tracking and ranking is particularly important as it provides feedback and 

motivation to volunteers. Developers need only supply the application code specific to 

their algorithm.

Volunteer  computing  projects  depend  on the  donation  of  computer  time  from 

desktop  computer  users  on  the  Internet.  These  worker  nodes  are  untrusted  and 

anonymous, and special considerations must be implemented when utilizing them. In 

addition to fault tolerance requirements (nodes abruptly disconnecting is the norm, not 

the  exception),  these  applications  must  also  (at  least)  double  check  their  results  to 

protect  against  malfunctioning,  or more probably,  malicious  nodes.  Malicious  nodes 

may  be  motivated  by  sabotage,  curiosity  and the  urge  to  deceptively  accelerate  up 

through the contribution charts.

BOINC provides facilities to help manage untrusted nodes in volunteer computing 
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projects. This includes tracking and rechecking nodes' work by resubmitting  jobs to 

other  nodes,  and comparing  results  for validity.  Doing this  for every job,  although 

thorough, would be inefficient. For this BOINC includes many options for performing 

this check on only a subset of the submitted jobs. BOINC can also use a credit point  

system to assign a trust reputation to users. As the users gain trust, their work is checked 

less.

2.5.2 QtConcurrent

The Qt Library  [14][87] is primarily a library for multi-platform graphical user 

interface (GUI) desktop application development. It  contains an API for drawing on 

screen  graphics,  managing interactive  widgets  and many other  utility  areas  that  are 

useful to developers who want to build cross-platform applications. One of these areas 

includes a  threading  module  that  provides  a  consistent   multi-platform API  around 

threads and threading primitives such as mutexes and semaphores.

In addition to basic thread primitives, Qt offers the QtConcurrent framework that 

provides  high-level  APIs  that  make  it  possible  to  write  multi-threaded  applications 

without dealing with lower-level primitives. The framework also provides some features 

specific to the Qt GUI library such as asynchronous function calling that frees the GUI 

thread from doing work, resulting in more responsive GUIs.

The QtConcurrent API uses a task concept, where programmers supply the basic 

algorithm task code, a data set, and then lets QtConcurrent partition and execute the 
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algorithm.  The library  performs the  thread  management  (usually  via  flexible  thread 

pools)  and  scheduling.  This  lets   programmers  concern  themselves  more  with  their 

specific  algorithm code rather  than  thread  management  and proper  thread  primitive 

usage.

Background tasks can be managed by the calling threads via a  future concept. 

When a background thread or thread set job is launched, the calling thread is given a 

future  token  that  represents  the  future  (not  yet  computed)  return  value  of  the 

background computation. The caller may query or wait on the future when it is ready, 

and upon completion can obtain the results of the background operation. This basic but 

powerful concept frees the user from having to manage thread processes.

QtConcurrent is useful for applications already utilizing the Qt library that need a 

small amount of concurrency features. However, it lacks many features found in other 

dedicated task libraries, and also (by design) does not contain any support for cluster or 

distributed computing

2.5.3 Threading Building Blocks

Threading Building Blocks (TBB) [89][113] is a C++ template library from Intel 

Corporation.  With  the  advent  of  multiple processing  cores  in  consumer  desktop 

machines (rather than increasing clock rate), Intel wants to increase multi-processing 

capabilities in standard desktop applications. It hopes to encourage such multi-threaded 

programming via the TBB library.
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TBB, like QtConcurrent,  provides a task based concept rather than thread and 

thread-primitives (mutexes, semaphores) approach to multi-programming. Programmers 

supply the basic algorithm task code, a data set, and then lets the library partition the 

data and run the algorithm. The library performs the thread management (usually via 

flexible thread pools) and scheduling. This, again, lets programmers concern themselves 

more  with  their  specific  algorithm code rather  than  thread  management  and proper 

thread primitive usage.

This approach is similar to OpenMP (discussed in Section 2.6.1) in theory, but in 

practice  is  much  different  (in  implementation).  TBB is  purely  a  C++ library  using 

standard C++ constructs and features. Unlike OpenMP, it does not require a specialized 

compiler or non-standard language extensions.

TBB is able to work with other threading libraries and with OpenMP. It is also 

designed with  nesting in mind, allowing all levels of a program to be parallelized. It 

uses a flexible, dynamic scheduling algorithm that supports work stealing (moving work 

from overloaded processors to idles ones). TBB, however, is only for threading and 

does not scale beyond one host such as for a cluster of workstations.

2.6 Language Extensions

Most modern and mainstream programming languages were not designed with 

parallelism in mind. The easiest way to add parallelism to an application using such 

languages  is  via  a  code  library,  extending  the  functionality  of  a  language  without 
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changing the language itself.

An  alternative  to  code  libraries  is  to  extend  the  language  (or  create  a  new 

language)  with  parallel  concepts,  such  as  iterators  and  synchronization  operations. 

Parallelism  constructs  become  a  natural  and  integrated  part  of  the  language,  fully 

checked during the compiling process with instant error feedback.

Switching  (or  updating)  a  user's  programming  language  requires  a  larger 

commitment  from  the  programmer.  The  programmer  must  now  use  a  specialized 

compiler, which may be costly, or may not perform as well as the non-parallel compiler 

in other areas. Unless the extensions are optional, the programmer is now committed to 

this (possibly) niche compiler for all future projects and platforms. 

Alternatively, language extensions may be implemented as code translators that 

transform extended code to standard code. Although complicating the build process, this 

technique allows the  continued  use of existing (and trusted) standard compilers for 

parallel projects.

Finally, there is research (such as SUIF [3][44] and the Intel Compilers [52]) into 

making compilers automatically parallelize serial code. This would be a panacea for 

parallel code development: free parallelization without any added development work. 

However, this challenging problem has had limited success as it is often difficult (due to 

the  inherit  dynamic  nature  of  many  programming  languages)  to  fully  statically  (at 

compile time) deduce a program's structure without some input from the programmer. 

The programmer's understanding of an algorithm's intent seems critical to being able to 
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decompose and partition an algorithm for parallel execution.

This section outlines some language extension-based packages.

2.6.1 OpenMP

OpenMP (Open  Multi-Processing)  [24][78] is  a  shared-memory  (via  threads) 

multi-programming API standard created by the OpenMP Architecture Review Board 

(ARB). The first version was released for Fortran in 1997 followed by a C/C++ version 

in 1998.

Under C/C++, OpenMP permits code to be augmented with OpenMP directives. 

These directives direct an OpenMP compiler to partition and parallelize segments of 

code  using  threads.  Thread  management  is  done  automatically,  using  a  variety  of 

scheduling schemes, such as dynamic, static and guided scheduling, with respect to the 

data.

These directives are implemented as #pragma preprocessor directives. Compilers 

that do not support these specialized directives simply ignore them, permitting OpenMP 

code to be  compilable by conventional compilers for execution on serial machines.

OpenMP  provides  a  support  library  that  is  linked  with  OpenMP  programs. 

Programmers may use the API provided by this library to perform additional dynamic 

(at  run-time)  tuning  and  configuration.  Users  may  also  influence  OpenMP-enabled 

programs by setting various OpenMP-specific environment variables.

OpenMP support has often been implemented in specialized compilers such as 

45



Chapter 2: Background: Parallel Programming

those by PGI [112] and Intel [52]. Recently, however, more mainstream compilers such 

as the GNU Compiler Collection (GCC) [38][41] and Microsoft Visual Studio [47] have 

added support for OpenMP, providing opportunity for wider adoption.

OpenMP  provides  a  solution  only  for  shared-memory  (single  host)  multi-

processing. Although it can be combined with cluster computing solutions,  OpenMP 

itself does not provide multi-host parallel computing features.

2.6.2 Unified Parallel C

Unified Parallel C (UPC)  [12][23][107] is an extension of the C programming 

language designed for high performance computing on large-scale parallel machines. 

The  language's  model  is  usable  on  clusters  of  machines  (distributed  memory 

architecture) but the programmer is presented with a single address space. Variables are 

grouped to processors but any processor may transparently access any other processor's 

variables that are marked as shared.

Thread scheduling is set at program startup, usually one operating system thread 

per physical processor (or processing core). UPC makes no implicit assumptions about 

the  memory  and  synchronization  model.  The  programmer  must  explicitly  use  the 

various  provided  threading  primitives  to  synchronize  access  to  shared  data.  These 

primitives include typical mutexes (locks) and barriers (synchronization points).

UPC requires  special,  upgraded compilers  to  compile  its  extended  C code.  A 

modified  version  of  the  GNU  C Compiler  (GCC),  GCC UPC  [39] supports  UPC. 
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Various research compilers also support UPC.

2.6.3 Erlang

Erlang  [9][10][33] is  a  programming  language  for  the  development  of  highly 

concurrent, robust and fault  tolerant software systems. The research work  on Erlang 

started in 1981 at  the Ericsson Computer Science Lab with production deployments 

starting in 1988. Development and interest continues to this day.

The  language  focuses  on  developing  highly  concurrent  applications  through 

message passing, with a strong emphasis on boss-worker and client-server topologies. 

Any function can be made into a concurrent task: giving it a PID (process identifier) 

with which it can receive and send messages. In-language primitives are provided for 

sub-task  spawning,  asynchronous message  sending,  receiving,  parsing,  and queuing. 

The  runtime  has  native  support  for  clustering,  allowing  multiple  Erlang  process 

instances to intercommunicate for performance scalability on one host, or a network of 

many  hosts.  Finally,  the  language  has  support  for  multiple  versions  of  functions, 

building  a  foundation  to  allow  in-place  updates  of  live  software  resulting  in  no 

downtime, a feature critical to demanding, high-availability domains.

The language, its libraries and runtime have been successfully used and deployed 

in  a  variety  of  areas.  These  include  Ericsson's  AXD301  scalable  telephone  switch, 

CouchDB  [7][8] a  schema-free  database  and  the  X2000  satellite  control  system 

developed by NASA [2].
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Erlang  has  been  deemed  a  success  in  its  particular  niches.  Unfortunately, 

widespread adoption has been slow. Its Prolog-inspired syntax can seem alien to most 

programmers,  giving it  an actual  and psychological  learning curve.  Erlang does  not 

integrate well with C code, requiring quite a bit work to adapt and interface non-Erlang 

code with the Erlang messaging model. Finally, it does not support generics and other 

numerically optimized types making it cumbersome and slow for numerical computing.

2.7 Other Solutions

This section describes parallel processing solutions that do not fit in the previous 

sections. 

2.7.1 Mosix

Mosix [11][72] is management software for Linux clusters. Development started 

in 1977 and continues on various platforms. In 1999, a Linux version was released and 

immediately capitalized on the popularity for cost-effective cluster computing.

Mosix extends and enhances the Linux kernel software so that multiple Linux 

kernels  on  separate  machines  can  combine  and  present  one  large  system image  to 

processes.  The  processing  and  memory  resources  are  merged  together  presenting  a 

large, single-system image (SSI) to users and applications.

Mosix is not a programmer's library and does not need to introduce new APIs for 

applications. Rather, applications run unmodified on a Mosix cluster as if they are on a 

large computer. The Mosix Linux kernel provides all the standard, expected operating 
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system features and functions.  Older  applications  may be reused directly,  extending 

their life. Usability is simplified by presenting the user with one system interface.

Multi-processing  is  performed  via  the  standard  operating  system  threading 

interfaces. Applications that take advantage of single-host parallelism via threads would 

scale  to  multi-host  parallelism  on  a  Mosix  cluster.  Applications  can  now  scale  to 

clusters with no added development time.

Unfortunately, a Mosix cluster can only emulate a single system in interface but 

not  in performance.  On a true single system all  processes have high speed (via  the 

system bus) access to memory, often with uniform latency. Under a Mosix cluster each 

processor only has system bus-speed access to the memory in the same node. Accessing 

memory  in  another  node  requires  network  communication.  This  creates  a  latency 

bottleneck as the much slower network is used to simulate memory reads and writes.

Most  threaded applications  assume very fast,  random access  to  memory,  as  is 

typical in most workstations. As a result, many such applications have intricate memory 

access patterns or non-local (per processor) memory working sets. When scaled to a 

Mosix cluster, such applications may “thrash”  (abuse) the network, making the network 

a  performance  bottleneck  and  severely  limiting  overall  system  efficiency,  negating 

parallelism speed-up.

These performance issues can be somewhat mitigated by using faster, possibly 

specialized, intercommunication hardware such as Infiband  [51] or SGI NUMA [19]. 

Persistent performance problems, however, may require some software redesign. The 
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redesign need not necessarily be major – developers can still use single-image threads 

for multi-programming – rather the application should attempt to better localize data 

and memory access per thread (which results in better local working sets for processors 

and thus less network communication overall).

2.7.2 OpenCL

OpenCL  [59][114] provides  a  standard  for  utilizing  graphic  processing  units 

(GPUs) in consumer 3D accelerator hardware for fast, parallel computing in the form of 

GPU-computing. OpenCL is vendor neutral standard, unlike previous vendor-specific 

solutions  such  as  NVIDIA's  CUDA  [92].  Although  not  directly  related  to  cluster 

computing, GPU-computing, like cluster computing, utilizes COTS hardware to realize 

large  performance-price  gains.  However,  GPU-computing  can  be  combined  with 

cluster-computing to combine their respective benefits.

Thanks  to  the  continued  performance  push  of  consumer  video  games,  high-

performance,  dedicated  hardware  graphics  accelerators  have  reached  mass-market 

adoption. No longer is high quality 3D graphics the exclusive domain of specialized 

workstations for vendors such as SGI [98]. These graphics accelerators contain highly 

specialized graphics processing units (GPUs) that are capable of rendering visual scenes 

orders of magnitude faster than general processors (CPUs).

By its nature, the process of rendering and rasterization of graphics onto a display 

lends itself to parallelization. As such, GPUs attain their high-performance by applying 
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parallel  processing  to  this  problem.  GPUs  are  composed  of  many  smaller,  simpler 

processors that perform the rendering in parallel. Together, these simple processors can 

easily outperform a single, but much faster general processor at this particular task.

More recently,  the various parallel  processing elements in GPUs have become 

user-programmable,  and may be used for non-graphics related functions. Developers 

may compile specialized mini-programs for the parallel units and have the GPU execute 

their combined programs in a highly parallel fashion, with speed-ups of an order of 

magnitude or more over conventional CPUs. Hardware vendors first introduced their 

own APIs and standards for these programs, such as NVIDIA with CUDA. Standards 

such as OpenCL have emerged to unify APIs and provide a  common language and 

interface for developers.

Currently, due to hardware limitations, OpenCL programs have many restrictions, 

such  as:  program size,  memory  accessibility,  variety  of  data  types,  stack-less  local 

variables (eliminating recursive functions) and no heap (eliminating dynamic memory). 

Even with these constraints, developers have been clever in applying GPU-computing 

to non-graphical, but computationally demanding areas. Even so, adoption is only in the 

preliminary  stages  and  is  expected  to  increase  when  some of  these  restrictions  are 

relaxed, features are added to the standard, and development tools mature.

OpenCL and GPU computing provide an additional parallel computing option for 

algorithm developers. Although not directly related to general CPU parallel processing, 

GPU  programming  requires  similar  proficiencies  in  algorithm  decomposition  and 
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design. GPU algorithms may also be combined with general parallel computing, using 

traditional parallel computing to link (via a network) GPU-enabled compute nodes.
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3 Background: The C++ Language

3.1 Introduction

For all  but  the most  short  term (“throw away”)  projects,  the  choice  of  which 

programming  language  to  use  when  implementing  an  algorithm  or  developing  an 

application  is  important.  The  language  must  be  relatively  modern  (that  is,  still 

maintained and used) yet show that it will last (and still be maintained and used in the 

years  to  come).  This  requires  that  the  language  not  be  obscure  (for  finding  future 

developers  and  maintainers  may  be  problematic).  Finally,  in  high  performance 

computing and especially cluster computing, the language must  be efficient, or more 

specifically, allow for the creation of efficient run time executables.

Traditionally, C [58] or Fortran [63] are used when implementing computationally 
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demanding  algorithms.  Developers  simply  require  the  pure  speed  offered  only  by 

languages  that  are  efficiently  compiled  to  machine-specific  code.  More  popular 

interpreted languages – those that compile to an intermediate representation that is then 

interpreted at runtime –  can introduce  a significant amount of computation overhead. 

These interpreted languages (such as Java [55], Python  [86] and Ruby [91]) are ruled 

out when such delays translate to longer run-times.

Contrast this to desktop or web application developers who are more interested in 

programming  languages  with  ease  of  use  features  (such  as  automatic  memory 

management) and many software library options (fostering code reuse) rather than pure 

performance.

When  application  and  algorithm  developers  mix  (for  example,  providing  an 

interface or visualization options to an algorithm), often a two-language approach will 

be used. The computation core will be written in C and the interface in an interpreted 

language, such as Java. The two mix either via an embedded approach (in Java's case, 

via JNI, the Java Native Interface) or via a network communication approach. Examples 

of this approach can be found in MATLAB [97][111] and Maple [67]. 

The C++ language provides benefits to both application and algorithm developers. 

To  the  algorithm  developers,  it  provides  various  features  (some  of  which  will  be 

enumerated in the following sections) that make code more robust, concise and flexible, 

yet still compile to  fast  machine code. To the application and algorithm development 

teams, it offers a unified language that may straddle both the domains of algorithms and 
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interfaces in one efficient and flexible package.

C++ is often overlooked by programmers with the perception of it being too large 

a language,  bloated with unnecessary features, ignorant of their uses and applications. 

With enough patience and time, developers will learn of each feature's particular use 

and  how  it  makes  for  writing  better  program  and  libraries,  without  sacrificing 

performance.

3.2 History

Bjarne  Stroustrup  began  designing  the  C++  (at  the  time,  C  with  Classes) 

programming language in 1979 while at Bell Labs with the hope that it would aid in the 

development of a network-distributed UNIX operating system kernel [105]. Having had 

previous positive experience with Simula in his Ph.D. work, but negative experiences 

with its performance and scalability for larger systems, Stroustrup vowed never again to 

tackle large projects with inadequate programming tools and languages.

The C language [58], chosen as the base for C++, is flexible and efficient, and its 

implementations widely available and highly portable  [105]. C is  efficient as its low-

level operations, such as bit-manipulation and unchecked type conversion mirror the 

fundamentals of traditional computers, crucial for performance and access to hardware 

(the latter an absolute requirement when writing operating system software). C++ was 

deemed a programming structure and organizational enhancement to the language, and 

priority was given that they not introduce any run-time overhead compared to pure C. 
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This  no-worse-than-C (often  termed  as  the  zero-overhead rule)  approach  to 

performance would prove to be an important feature, allowing the language to be used 

in  many  performance-critical  applications.  Being  built  on  an  existing,  well-tested 

language  meant  that  C++  introduced  no  limitations  to  the  programmers  and 

immediately offered them a familiar programming style in which they could reuse much 

of their existing code.

C++ was first publicly released in 1985 [105], with the publication of The C++ 

Programming  Language  [104] and  the  commercial  Cfront C++  compiler.  Although 

sometimes confusingly referred to as a preprocessor, rather than emitting machine code 

it  emitted C code,  Cfront was a full  compiler front-end. Cfront did full  C and C++ 

syntax and semantic checking (with immediate error feedback), built and analyzed an 

internal representation of the input and finally emitted the final C code, using C as if it 

was a portable  assembler.  The emitting  of  C code allowed  Cfront  to  use  the  wide 

availability  of  various  C  compilers  for  the  final  machine  code  generation  stage, 

increasing  the  available  platforms  for  C++  and  reused  the  compiler  optimizations 

research in existing compilers.

Cfront development continued, adding multiple inheritance to version 2.0 (1989), 

while  version  2.1  (1990)  brought  the  compiler  in  sync  with  The  Annotated  C++ 

Reference Manual  [32] the first official standards document for the language, which 

would become the starting point for official standardization. Release 3.0 (1991) added 

templates  and  exception  handling.  In  1991,  the  second  edition  of  The  C++ 
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Programming Language [104] was published.

Since 1990, the ANSI/ISO C++ standards committee has been the primary forum 

for the effort to complete C++. This was required as the user-base for C++ quickly 

attracted the interest of various groups of users, tool implementors and educators. To 

scale to these new demands and responsibilities, the committee was used as a forum to 

debate and flesh out the needs of the various stake holders.

In 1994 the ANSI/ISO Committee Draft was registered as an official standard, 

giving users and implementors a common reference or contract. Non-standard language 

extensions were still created as certain niche users required, or certain vendors thought 

they required. With the publication of a standard however, these extensions were made 

obvious, giving users an explicit line to cross when they entered non-standard territory.

3.3 Object-oriented programming

Object-oriented  programming  involves  the  concept  of  grouping  data  and 

functionality into “objects” (packages of state variables and functions) when designing 

computer software. Although Simula  [26] is often considered the first object-oriented 

language, the paradigm did not gain mainstream popularity until the early 1990s. C and 

Fortran do not support this paradigm within the languages themselves. However, most, 

if not all, new programming languages do provide an object-oriented paradigm.

Traditionally,  an object-oriented programming language provides the following 

features  [69]: (i) modularity: the concept of grouping functions and data or state (ii) 
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encapsulation:  the  ability  to  protect  or  restrict  data  to  key  functions  and  (iii) 

polymorphism:  the  ability  to  transparently  treat  particular  object  variations  as  some 

common, abstract, ancestor type.

The first goal of C++ was to add the object-oriented paradigm to the C language, 

and as such implements these concepts completely.  The  class construct allows the 

programmer to group functions (methods) and data together (providing modularity), the 

private and protected directives allow the programmer to protect data and methods 

within  those  classes  (providing  encapsulation)  and  finally  the  virtual keyword 

combined with class inheritance permits the programmer to utilize polymorphism.

The C programming language does not support object-oriented programming. The 

paradigm could and has been simulated (for example, in the GTK+ [62][110]  widget 

library) with varying degrees of success. Without help from the language, however, the 

programmer is  often left  with a  more tedious  and  verbose system. Method calls  in 

GTK+ for example must include an explicit reference to the class as well as a type cast.  

Creating  a  new class  in  GTK+ requires  dozens  of  lines  of  error-prone  setup  code, 

compared to one in C++ (a class construct).

Scientific  algorithm programmers  do  not  gain  many  benefits  from an  object-

oriented  programming  paradigm.  The  translation  of  mathematical  functions  and 

algorithms to computer code already maps nicely to the  separate  functions and data 

model  already  present  in  all  programming  languages,  including  C  and  Fortran. 

However,  these  concepts  are  useful  for  library  developers  in  these  domains,  giving 
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library authors the ability to present new objects (such as complex numbers, or new 

array structures) to algorithm developers without having to extend the language.

Applications  developers,  on  the  other  hand,  benefit  greatly  from  the  code 

organization benefits of object-oriented programming. Desktop applications tend to be 

larger (in terms of lines of code) projects, often with more authors employing a more 

disparate collection of software libraries than algorithm developers.

3.4 Class Destructors and RAII

The  C++  language  is  one  of  the  few  mainstream  object-oriented  paradigm 

supporting  languages  that  explicitly  supports  deterministic  class  destructors.  A class 

destructor  is  a  special  method  function  that  is  called  immediately  when  an  object 

instance  is  destroyed,  either  explicitly  from  the  heap  via  the  delete operator  or 

implicitly as the instance exits the scope of the containing function, block or class. The 

destructor is guaranteed to be called no matter how the execution path leaves scope, 

including via a  return or  break statement, or via a thrown exception. An annotated 

C++ example of this is:

void some_function(void)
{

FileObject F;
// assume that F's destructor will call F.close(),
// to terminate any resources

// open and work with F here...

if (...) {
throw some_exception(); // (1) exception thrown

}
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if (...) {
return; // (2) return immediately exits scope

}

// (3) F falls out of scope naturally
}

In the above example, the object  F will have its destructor (which in turn calls 

F.close()) implicitly called in all three locations. In another language,  programmers 

would have  littered their code with three calls to  F.close(), and calls to any other 

cleanup functions for any other object they may be using. This clutters the code and 

increases  the  chances  for  bugs (especially  memory leaks)  to  creep  in.  In  C++,  this 

technique is also required if the code is to be exception safe [108].

This use of destructors to automatically clean up resources implicitly has been 

encapsulated  in Resource  Allocation  Is  Initialization (or  RAII  [109]).  This  concept, 

where the acquisition and releasing of some resource (in this case, a file) is directly 

linked  to  the  lifetime  of  an  object  is  applicable  to  many  resources.  These  include 

dynamic memory allocations, reference counts, thread mutexes and semaphores, SQL 

queries and transactions, and graphical resources.

Interpreted  object-oriented  languages  such  as  Java  tend  to  be  coupled  with  a 

powerful  garbage  collection  mechanism,  making  memory  management  for  the 

application  developer  much  easier.  This  however  means  that  object  destruction  is 

decidedly  non-deterministic,  making  predictable  clean  up  code  cumbersome.  Java 

provides  a  partial  solution,  allowing  classes  to  clean  up  resources  via  an  optional 

finalize pseudo-destructor. This method will be called when the garbage collector is 
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disposing of the instance, which occurs after some unspecified delay after its end-of-

use.

Non-object oriented languages such as C have no concept of object-methods at 

all.  The  programmer  must  make  all  resource  allocations  and  deallocations  explicit, 

unnecessarily increasing code size and the potential for bugs.

3.5 Generic Programming

Generic  programming  [106] (using  templates  or  parameterized  types)  is  a 

programming paradigm that supports the design and development of functions and types 

(classes) that  operate on yet-unknown types. This is similar in idea to object-oriented 

programming, but with a significant difference. In generic programming, the types are 

reconciled  at  compile-time (rather  than  run-time)  affording  the  programmer  huge 

performance gains (as the generated types are custom built to the desired types) and 

compile-time type checking (reducing programming errors early in the development 

cycle).

C++ is the only mainstream language that implements full generic programming 

concepts with compile-time in-lining (where the bodies of functions are inserted right in 

the  caller's  code),  where  generated  types,  classes  and  algorithms  receive  the  same 

support and features as native types  [105] and functions.  Generated types using the 

template  mechanism  can  be  made  to  be  no-worse  than  if  the  same  concept  was 

programmed explicitly  by the  programmer  (or  via  macros).  This  ability  is  vital  for 
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numeric computing where performance is critical.

In the C language, macros can be used to simulate the most basic use-cases of 

template programming. However, in even those instances, macros lack such features as 

proper type checking and smart linking provided by C++ templates.

Combining templates, function in-lining and operator overloading (being able to 

redefine operators such as “+” or “()”) library programmers can make very powerful 

numerical array types that have no-worse-than-C performance characteristics [105]. For 

example, given the following C example, a 10 by 10 matrix of complex numbers of type 

double, lets assign -1 to the imaginary component in the matrix element 5,5:

double the_array[10*10*2]; // 100 elements
the_array[ ((6*10)+5)*2 + 1 ] = -1;

The same much more intuitive declaration in C++ might be:

narray<complex<double>,2> the_array(10,10);
the_array(5,5).imag_part = -1;

From  a  performance  standpoint,  the  two  versions  are  identical.  Utilizing 

templates, function in-lining, and operator overloading, the C++ version performs the 

same steps and operations as the C version but with a cleaner, more robust syntax. The 

C++ version could also have run-time range checking in the element look-up that can be 

quickly  disabled  (for  well  tested,  post-debugged  public  release  builds)  to  further 

enhance code robustness. The next C++ update, C++0x will introduce concepts to help 

alleviate  some  of  the  vague  and  verbose  errors  compilers  sometimes  emit  during 

template  programming.  Concepts,  similar  to  interface  classes  in  object-oriented 

programming will provide an interface specification for new types. Should a type fail to 
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fulfill a concept, a sensible error can be immediately emitted rather than emitting a more 

convoluted error later, when the type is used.

3.6 Memory management

Dynamic memory allows applications to request and utilize memory allocations of 

varying size as it is needed. This functionality is critical in  many types of algorithms 

and applications as it allows them to scale to any data set size, without wasting  memory 

through overestimated preallocations.

The C language's standard C library provides explicit functions malloc and free 

for  the  allocation  and  deallocation  of  dynamic  memory.  The  language  and  library 

provide  no aids  in  managing memory,  the programmer must  make sure  to  properly 

manage all dynamic memory allocations. This is error prone and often leads to many 

subtle and not so subtle memory errors (such as memory leaks).

The explicit managing of memory is so error prone that many new languages such 

as Java and C# tout their automatic memory management as one of their key features. 

These languages provide garbage collection (automatic memory management) services 

to  manage memory.  Through the coordination of language and runtime services,  all 

dynamic memory allocations (and their references) are managed by the runtime and 

library systems. The runtime is then able to determine when memory is no longer being 

used (“garbage”) and then proceeds to collect (free) the unused memory automatically 

and in the background. Although this allows some temporary memory waste, as there is 
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some delay between when memory is no longer needed and when it is actually freed, 

the convenience  and reliability  of  automatic  memory management  results  in a  huge 

boon for programmer productivity.

C++ takes a different approach to memory management than that of Java and C#. 

Although the basic and explicit memory management options of C are offered (as well 

as  the  newer type-aware  versions  new and  delete),  C++ allows  library  authors  to 

utilize the existing language facilities to create automatic memory management systems.

Utilizing generic programming, operator overloading, and RAII, programmers can 

create type-safe smart pointers that behave like normal pointers, but perform additional 

checks  and  other  functionality  on  assignment  and  termination.  Smart  pointers  can 

immediately  release  unused  memory  automatically  and  do  not  require  background 

processing  (or  a  specialized  runtime),  a  feature  important  for  memory  intensive 

algorithms. Smart pointers greatly enhance programmer productivity and reduce errors, 

while at the same time, giving no-worse-than-C performance. 

The standard C++ library provides a basic smart pointer, auto_ptr for basic one-

owner semantics and as an example of a smart pointer interface. For complex semantics, 

in particular, shared ownership, developers have had to go to other libraries (such has 

Boost's [16][57] shared_ptr or Scopira's [28][29][30][94] count_ptr). The new C++ 

update,  C++0x,  will  include  a  shared_ptr class  (using  Boost's  implementation), 

providing a standard shared-ownership shared pointer implementation.

Unlike  Java and C#, user types in C++ (such a complex number class) do not 
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have to be dynamically allocated on the heap. They can be allocated on the stack, within 

other  objects  directly  or  as  contiguous  sets  in  array  allocations.  This  is  vital  for 

numerical computing as it  means a large array of  n complex numbers, for example, 

could be allocated as one large contiguous block of memory. In Java, this would have to 

be  n individual  allocations  of  small  complex instances or as two separate  arrays  of 

doubles, each of length n (in essence, breaking the array of complex numbers into two 

arrays  of  real  parts  and  imaginary  parts).  The  former  case  wastes  (and  potentially 

fragments) memory and processor time, while the latter case forces the programmer to 

restructure their  program into primitives for performance reasons,  defeating a major 

benefit of using higher level languages.

3.7 Parallelism In C++

The  C++  standard  language  and  library  lacks  facilities  for  parallel  multi-

programming.  In  the  1980s,  during  the  early  days  of  C++  development,  multi-

programming was not  in  demand as  it  is  now.  Multi-processor  configurations  were 

strictly  the  domain  of  expensive  workstations  and  mainframes.  Local  computer 

networks were only beginning to be widely used and Internet connectivity was typically 

available only at academic and government institutions. This is in stark contrast to today 

where  multi-core  desktops  have  hit  the  mass-market  and  network  and  Internet 

connectivity is widely deployed.

The C++ standards committee is also very conservative with respect to adding 
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new APIs. They are aware that once an API is standardized, many vendors and users 

will invest in  it. Changing poorly thought out or inadequate standards after they are 

published  wastes  resources  and  investments  and  adds  to  user  confusion.  The  C++ 

standards committee did not want to prematurely commit to untested parallel APIs and 

designs.

As such, the C++ standards committee left it up to third party vendors to provide 

parallel  programming  libraries.  Although  this  provided  competing  non-standard 

libraries, it did permit ideas and APIs to test and prove themselves among users. Some 

C++ programmers  chose  C libraries,  out  of  compatibility  with  C code or  for  other 

reasons. The libraries span all the abstraction levels and ideas of parallel programming, 

from operating specific threading libraries, task-oriented libraries and message passing 

libraries to language extensions.

With the advent of mainstream multi-core computing, many desktop applications 

(not just scientific applications) are expected to be capable of multi-processing. As such, 

the C++ standards committee will include a threading API in the next C++ standard,

C++0x. This API is based on (and is almost identical to) the Boost library's  [16][57] 

threading implementation, and as such has had wide user-testing and feedback. This 

implementation is now available in the C++ Technical Report 1 (TR1), a preview of 

various new features in the upcoming update.
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3.8 The Standard C++ Library

The C++ standard library is relatively small compared to the libraries in Java or 

C#. This is the result of C++ being under the control of standardization committees and 

boards, rather than single companies (Sun and Microsoft, in the cases of Java and C# 

respectively); however what is supplied is well tested and vetted, and generic enough to 

be applicable to all programmers. The standard C++ library also provides a style of 

library implementation and design that can be used by other libraries.

The standard C++ library provides basic string facilities via string and wstring 

(wide-character), a requirement in all applications. Basic input/output facilities via an 

extensible iostreams systems is included. This allows the formatting and processing of 

the core data types to streams, as well as any user-data types. The streams are able to 

operate  on  disk  files  and  in-memory,  with  other  sources  provided  via  third party 

libraries.

The C++ library also provides a generic (template based) container collection that 

works on any data type. This collection includes re-sizable arrays (vector), linked lists 

(list),  associative  arrays  (map),  sets  (set)  and  other  common  containers.  Using 

generic  programming and compile-time type generation,  the resulting containers  are 

specific  to  their  contained-types,  resulting  in  the  best  possible  performance. 

Programmers never again have to re-implement these structures for their types.

General  algorithms  are  also  supplied.  Functions  such  as  searching,  sorting, 

partitioning,  iteration  and  counting  are  provided.  There  are  also  generic  (template 
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based)  functions  and  algorithms  that  can  work  on  any  data  type  (mostly  iterators, 

discussed below).

The containers and algorithms in the C++ library are brought together via the 

iterator concept. An iterator is a programming object that can move or iterate through 

some  data  set.  Iterators  can  vary  in  their  interface  and  capabilities,  while  their 

implementations are specific to their container. The iterator concept was made to mimic 

the  interface  of  standard  C  pointers  and pointer  iteration.  This  has  the  tremendous 

benefit  of  being  able  to  use  standard  C arrays  and  pointers  with  the  C++ library's 

algorithms. The mixing of algorithms and containers via iterators is done at compile 

time, again resulting in efficient code comparable to hand-coded solutions – vital for 

algorithm developers.

Developers are of course free to use the plethora of third party libraries that build 

on this foundation. Due to the power of the language itself, library developers are able 

to  create  some  high-performance  compile-time  based  libraries  without  needing  to 

update the language.

The Boost  [16][57] library is one such library that prides itself on its high code 

quality standards by providing high performance, multi-platform and flexible, general 

C++ libraries. It tends to follow the standard C++'s library ideals of using a broad range 

of the language's features to achieve its goals. Some notable libraries in this collection 

span the areas of: threading, random number generation, graph construction, an MPI 

[68][99] layer,  image  manipulation,  Python  interfacing,  smart  pointers,  regular 
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expressions, serialization and multi-dimensional arrays. Boost's quality standards are so 

high  that  it  is  often  used  as  a  testing  ground  for  libraries  and  features  under 

consideration for feature updates to the C++ libraries. In fact, Boost's implementations 

for threads and smart pointers are among some of the updates to the next C++ standard, 

and may already be used in TR1.
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4 Background: The Scopira Library

This  chapter  outlines the  Scopira  Library,  a  programming library  that  is  used 

extensively by the work in this thesis.

The initial  driving  force for  Scopira  was to  develop a  comprehensive,  object-

oriented  programming  architecture  using  C++  for  the  development  of  applications 

relating to exploratory data analysis of magnetic resonance images (MRI), especially 

functional  MRI  [49].  Subsequently,  the  architecture  was  expanded  to  deal  with 

confirmatory and exploratory biomedical data analysis, visualization, and interpretation, 

in general. This approach strikes a balance between slow interpreted languages such as 

IDL  [17][115] and MATLAB [97][111] and fast  compiled languages  such as C and 

Fortran. Although well suited for algorithm prototyping and ad-hoc data visualization, 

interpreted languages are simply not suitable for application development. Conversely, 
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C and Fortran, although efficient, lack basic and expected language features such as 

object-orientation  or  basic  memory  management  required  for  building  large  scale 

applications. C++ was chosen to straddle the two extremes, and even though it has been 

somewhat overshadowed by newer languages such as Java  and C#, it is still the only 

language with such features as  generics  and object-orientation that  still  compiles  to 

efficient machine code.

The emphasis with Scopira [28][29][30][94] has been on high performance, open 

source development and the ability to easily integrate other C/C++ libraries used in the 

biomedical data analysis field by providing a common OOP API for applications. This 

library provides a large breadth of services that fall into the following three component 

categories:

Scopira Tools provide extensive programming utilities and idioms useful to all 

application types. This category contains the reference counted memory management 

system,  flexible/redirectable  flow  input/output  system,  which  supports  files,  file 

memory  mapping,  network  communication,  and  check  sum  calculation,  as  well  as 

object  serialization  and  persistence,  reproducible  and  tunable  random  number 

generation, universally unique ids (UUIDs) and XML parsing and processing.

The Numerical Functions all build upon the core n-dimensional narray concept. 

C++ generic programming is used to build custom, high-performance arrays of any data 

type and dimension. General mathematical functions build upon the  narray. A large 

suite of biomedical data analysis and pattern recognition functions is also available.
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Finally,  a  Graphical  User  Interface  Library based  on  GTK+  [62][110]  is 

provided.  This  library  provides  a  collection  of  useful  widgets  including  a  scalable 

numeric matrix editor, graph plotters, image viewers as well as a plug-in platform and a 

3D canvas based on OpenGL [46][77].

The next  three sections describe each of these Scopira component categories in 

turn.  This  is  followed  by  a  section  presenting  a  few  biomedical  data  analysis 

applications developed using Scopira and is followed by some concluding remarks.

4.1 Scopira Tools

Scopira consists of modular subsystems that can be used as needed by developers. 

The  Scopira  Tools subsystem provides generic facilities useful in many programming 

domains, not just numerical and scientific computing.

4.1.1 Memory Management

An  intrusive reference  counting  scheme  provides  the  basis  for  memory 

management.  The scheme is  considered intrusive  as  it  records  an  object's  reference 

count within the object itself, typically by having the object descend from a common 

base class.  Many libraries,  such as  VTK  [93][116] and GTK+  [62][110] implement 

similar reference counting systems.

Scopira implements a template class  count_ptr that emulates standard pointer 

semantics  while  providing  implicit  reference  counting  on  any  target  object. 

Alternatively,  the  intrusive_ptr from  the  Boost  library  may  also  be  used,  as 
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Scopira's reference counting scheme is compatible with its requirements. With either 

smart  pointer,  reference  management  becomes  considerably  easier  and  safe,  a  vast 

improvement over C's manual memory management.

4.1.2 Input/Output

Scopira provides a flexible, polymorphic and layered input/output system (Figure 

2). Flow objects may be linked dynamically to form I/O streams. Scopira includes end 

flow objects, which terminate or initiate a data flow for standard files, network sockets 

and memory buffers. Transform flow objects perform data translation from one form to 

another  (e.g.,  binary-to-hex),  buffer  consolidation  and  ASCII  encoding.  Future 

transformers  will  include  CRC  calculators,  compressors  and  cryptographic  ciphers. 

Serialization flow objects provide an interface for objects to encode their data into a 

data stream.  Through  this  interface,  large  complex  objects  can  quickly  and  easily 

encode  themselves  for  storage  to  disk  or  transmission  over  a  network.  Upon 

reconstruction, the serialization system re-instantiates the objects from type information 

stored  in  the  stream.  Shared  objects  –  objects  that  have  multiple  references  –  are 

serialized just once and properly linked to multiple references.
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Figure 2: Scopira input/output stack

4.1.3 Configuration Handling and Plug-ins

A platform independent application-preferences handling system is supplied via a 

central  parsing  class.  This  class  is  able  to  accept  input  from a  variety  of  sources 

(configuration  files,  command  line  parameters,  etc.)  and  present  them  to  the 

programmer via one consistent interface. The programmer may also store settings and 

other options via this interface, as well as build GUIs to aid in their manipulation by the 

end user.

Using a combination of the serialization type registration system and C++'s native 

RTTI (run-time type information) functions, Scopira is able to dynamically (at runtime) 
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allow  for  the  registration  and  inspection  of  object  types  and  their  class  hierarchy 

relationships. From this, an application plug-in system can be built by allowing external 

modules (e.g. dynamic link libraries) to register their own types as being compatible 

with an application, providing a platform for third party application extensions.

4.1.4 Other Utilities

Finally, the tools subsystem provides a variety of other services and interfaces. 

Native operating system threads (via the POSIX threads interface) are presented as C++ 

objects,  with  mutex  locking  and  shared  areas  accessed  via  classes  that  follow  the 

Resource  Acquisition  Is  Initialization (RAII)  (Section  3.4)  principle.  Generic  arrays 

provide  a  lightweight  (yet  still  STL-like)  array class  that  is  simpler  than  the  STL's 

vector class and not specific to numeric computing as is Scopira's  narray. Random 

number generation (inspired by Boost's random library) is also included. Universally 

unique  identifies  (UUIDs) and uniform resource locators  (URLs) are  also  provided. 

XML processing (provided by the libxml2 library) is an optional feature, allowing one 

to build open and easy to use data file formats.

4.2 Numerical Functions

The central area of Scopira that is relevant to numerical and parallel computing is 

its array class, narray. This section will describe the background, reasoning and design 

of these arrays in depth.
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4.2.1 Background: Arrays

The C and C++ languages provide the most basic support for one dimensional 

arrays, which are general and are closely related to C's pointers. Although usable for 

numerical computing, they do not attempt to provide the additional functionality that 

scientists  demand,  such  as  easy  memory  management,  intuitive  mathematical 

operations,  or  fundamental  features  such  as  storing  their  own dimensions.  Multiple 

dimensional  arrays  are  even  less  used  in  C/C++,  as  they  require  compile-time 

dimension specifications, drastically limiting their flexibility.

The C++ language, rather than design a new numeric array type, provides all the 

necessary  language  features  for  developing  such  an  array  in  a  library.  Generic 

programming (via  C++ templates,  that  allow code to  be used for any data  types  at 

compile time), operator overloading (e.g. being able to redefine the plus “+” or  array 

access “[]” operators) and inlining (for performance) provide all the tools necessary to 

build a high performance, usable array class.

The  C++  standard  template  library  (STL)  uses  these  facilities  to  create  the 

vector class.  This  class,  along  with  its  sibling  containers  and  variety  of  generic 

functions provides an example of how to design the interface and implementations of 

flexible generic containers and algorithms. The STL vector class is a general vector 

class, designed to support all data types. Although a significant improvement to raw C 

arrays, these “arrays” still  lack many features useful in numeric computing,  such as 

multi-dimension arrays  and subset-slices.  One method of  creating multi-dimensional 
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arrays with the vector type involves having a vector of vectors (and so on for higher 

dimensions). Although this works in limited situations, it has many disadvantages such 

as being less efficient, non-contiguous memory storage (eliminating the useful ability to 

treat  the  multi-dimensional  array  as  a  single  one-dimensional  array),  inconsistent 

interfaces and verbose type names.

The C++ STL touches on the topic of numeric arrays with its valarray concept. 

This  is  a  generic  array  container  designed  for  numeric  computing  with  hooks  for 

providing high performance element-wise operations. These classes were designed for 

specific vector operations, specifically high performance bulk operations, and were not 

intended  to  be  general  numeric  arrays  with  ease  of  use  as  a  goal.  However,  this 

container   can  be  used  as  a  building  block  for  building  an  end-user  array  class 

(examples  are  even  provided  in  [106]),  if  only  indirectly  (that  is,  as  a  guide  for 

interfaces and implementation).

The  valarray types  introduce another  concept  not addressed by the standard 

vector type  or  C  arrays:  the  concept  of  slices.  Via  the  slice_array type  (and 

mask_array and indirect_array types, which take this idea to different ends), slices 

allow the program to view subsets of an array via an array-like interface. By storing 

basic  information  such as  strides  (that  is,  which  nth element  does  the  slice  use  the 

original array), general slices operating on any dimensions within the host array can be 

made.  This  powerful  concept  is  incredibly  useful  and  is  necessary  for  any  serious 

numerical array framework.
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Users  have  created  their  own  libraries  to  fill  the  void  left  by  the  lack  of 

standardized multi-dimension array classes in C++. These libraries vary in performance, 

API style, and focus. Some of the  better established packages will  now  be discussed 

here.

The  highly  regarded  Boost  C++  libraries  [16][57] contain  not  one,  but  two 

numerical  array  libraries,  both  introduced  in  version  1.29  of  the  library  collection: 

Boost.MultiArray and uBLAS.

Boost.MultiArray provides a basic, but complete n-dimensional array class with 

support for views and slices. The library, like many of those in the Boost collection, 

utilize advanced C++ features and idioms to achieve their goals of performance and 

completeness,  sometimes  sacrificing  ease  of  use  for  newer  C++ programmers.  This 

library, at its core has the most in common with the Scopira narray classes, differing 

mainly in their notions of element access and use of temporaries.

uBLAS is a C++ library that provides BLAS (Basic Linear Algebra Sub-programs) 

functionality for a variety of different matrix types. Building on BLAS Fortran library, 

uBLAS is  designed with performance in mind (especially  with the goal of being no 

worse than its Fortran predecessors) and focuses on linear algebra operations and matrix 

data types. The library supports a variety of matrix types (including dense, packed and 

sparse matrices) but does not generalize at all to larger dimensions.

The Blitz++ library [15] is an older library that provides an n-dimensional array 

class, complete with slicing. The API focuses on the array classes itself, and does not 
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offer a collection of algorithms, or interpolation aids with visualization systems or other 

libraries. The development of Blitz++ has slowed after a decade, and has switched to a 

maintenance mode without reaching a seminal 1.0 version.

Although  there  are  numerous  implementations  of  n-dimensional  array  classes, 

algorithm developers and users often need not be too concerned with over committing 

or being locked into one particular implementation. Due to the large influence of the

C++ STL on the various library developers, there are only a small set of element access 

styles that are used. Many also offer raw C-array like access to ease interfacing with 

other  libraries.  Using  simple  adapter  classes  or  systematic  source  code  refactoring, 

developers may quickly update their code to work with any new libraries.

4.2.2 The nindex Class

The core Scopira array type narray uses an nindex type to generalize arrays to 

any dimension. This nindex type can be thought of as the coordinates or reference of 

an element in an array. This is a template type that is generalized by the dimension only 

(it  does not specify the element type).  For example,  nindex<2> is  a 2-dimensional 

array  index  (matrix)  and  contains  two  values,  x and  y.  Similarly,  nindex<1> only 

contains the  x value, and  nindex<3> contains  x,  y, and  z values. Internally, these are 

generalized  to  small,  non-resizeable  arrays  with  specialization  for  the  first  few 

dimensions. In addition to storing the coordinate values, this class provides operations 

that are needed in building a generalized array type such as returning the product of all 
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the values or calculating stride arrays.

4.2.3 The narray Class

After defining the  nindex concept, building basic  narray array types becomes 

relatively straightforward. A simplified definition of narray is:

template <class T, int DIM> class narray {
T* dm_ary;    // actual array elements
nindex<DIM> dm_size; // dimension sizes

T get(nindex<DIM> c) const {
assert(c<dm_size);
return dm_ary[dm_size.offset(c)];

}
}

From this code snippet we can see that an  narray is a template class with two 

compile time parameters:  T, the element data type (int,  float,  etc.)  and  DIM,  the 

number of dimensions (1, 2, 3, etc.). The actual elements are stored in a dynamically 

allocated C “array”,  dm_ary.  The  dimension lengths  are  stored in  an  nindex type, 

building on that generalization.

A generalized  accessor  is  provided,  which  uses  the  nindex-offset  method  to 

convert the dimension specific index and size of the array into an offset into the C array. 

This generalization works for any dimension size.

Another feature shown here is the use of C's assert macro to check the validity 

of the supplied index. This boundary check verifies that index is indeed valid otherwise 

failing and terminating the program while alerting the user. This check greatly helps the 

programmer  during  the  development  and testing  of  applications,  and during  a  high 
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performance/optimized  build  of  the  application,  these  macros  are  transparently 

removed, obviating any performance penalties from the final, deployed code.

More user friendly accessors (such as those taking an x value or an x and y value 

directly) are also provided. Finally, C++'s operator overloading facilities are used to 

override  the  bracket  “[]”  and  parenthesis  “()”  operators  to  give  the  arrays  a  more 

succinct and natural feel, over explicit get and set method calls.

Although  technically  a  violation  of  encapsulation  in  object-oriented  design 

principles, the  narray class provides an accessor to get at the internal C array. This 

access  is  invaluable when interfacing with other  libraries  or  data  structures,  despite 

bypassing all the programming checks in narray.

4.2.4 The nslice Class

The  nslice template  class  is  a  virtual  n-dimensional  array  that  is  simply  a 

reference  to an  narray. The class only contains dimension specification information 

and is easily copyable and passable as function parameters. Element access translates 

directly to element accesses in the host narray. An nslice must always be of the same 

numerical type as its “host” narray, but can have any dimensionality less than or equal 

to the host. This flexibility is very powerful; one could have a one-dimensional vector 

slice from a matrix, cube or five-dimensional array, for example. Matrix slices from 

volumes are also quite common (e.g.  Figure 3). These sub slices can also span any of 

the dimensions/axes, something not possible with simple pointer arrays (for example, 
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matrix slices from a cube array need not follow the natural memory layout order of the 

array structure).

The nslice implementation is inspired by the STL's gslice_array types. That is, 

in  addition  to  basic  source  nslice reference  and  dimension  size  information,  the 

nslice contains  an  array  of  strides.  These  strides  indicate  how  many  raw  array 

elements are between the user elements in the nslice.

Programmers who wish to write more general code, should use  nslice in their 

interface. Not only is obtaining an nslice representation of an narray trivial (in terms 

of both use and performance), but code that uses nslice is able to operate on a wider 

variety of source arrays and sub slices.

For maximum flexibility, programmers should write their algorithms in a type-

free manner using C++ templates and generic programming. The nslice type has the 

same “form” as an  narray,  that is,  it  has all  the same accessor methods and other 

operations, including producing nslices of itself. Programmers can then use templates 

to allow their algorithms to take any narray-like “form” which includes nslice. These 

algorithms can also generalize the actual element type allowing them to be used on any 

precision real numbers or integers (if applicable) as needed.

For applications that take vectors or sequences of elements, the more general STL 

style begin/end iteration is encouraged. Both narray and nslice support this, as do the 

STL containers and countless other third party libraries.
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Figure 3: An nslice reference into an narray data set

4.2.5 Memory Mapping

The narray class provides hooks for alternate memory allocation systems. One 

such system is the DirectIO mapping system. Using the memory mapping facilities of 

the operating system (typically via the  mmap function on POSIX systems), a disk file 

may be  mapped into memory. When this memory space is accessed, the pages of the 

files are loaded into memory transparently. Writes to the memory region will result in 

writes to the file.

This allows files to be loaded in portions and on demand. The operating system 

will take care of loading and unloading the portions as needed. Files larger than the 

system's memory size can also be loaded – the operating system will  keep only the 

working set portion of the array in memory. However, mapping files that are larger than 

physical memory must be done with care, programmers should still  keep the working 

set within the memory size of the machine. If the working set exceeds the available 
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memory size, performance will suffer greatly as the operating system pages portions to 

and from disk (excessive juggling of disk-memory mapping is sometimes called “page 

thrashing”).

Furthermore,  as  the  narray class  is  64-bit  clean,  on 64-bit  architectures  very 

large files may be used as datasets and the operating system will page portions of the 

file into memory as needed. One caveat that large-dataset programmers must be aware 

of, however, is that if one element is accessed in the array, then the operating system 

will load that element's complete page from disk (each page is usually a few kilobytes). 

Slices that  access  many sparse elements  will  end up paging many sections  to disk, 

ballooning the  actual  working space  size  of  slice  operations  that  do  not  follow the 

natural C array order.

4.3 Graphical User Interface Library

This subsystem provides a basic graphical API wrapped around  GTK+ [62][110] 

and consists  of widget  and window classes that become the foundation for all  GUI 

widgets  in  Scopira.  More  specialized  and  complex  widgets,  particularly  useful  to 

numerical computing and visualization, are also provided. This includes widgets useful 

for the display of matrices, 2D images, bar plots and line plots. Developers can use the 

basic  GUI  components  provided  to  create  more  complex  viewers  for  a  particular 

application domain.

The  Scopira  graphical  user  interface  subsystem  provides  useful  user-interface 

84



Chapter 4: Background: The Scopira Library

tools (widgets) for the construction of graphical, scientific applications, with particular 

focus on the biomedical research domain. A matrix/spreadsheet like widget is able to 

view and edit arrays (often, but not limited to matrices) of any size. This extensible 

widget  is  also  able  to  operate  on  Scopira  narrays natively.  The  widget  supports 

advanced functionality  such as bulk editing via  an easy to  use,  stack based macro-

language.  This  macro-language  supports  a  variety  of  operations  including  setting, 

copying and filter selecting data within the array. A generic plotting widget allows the 

values of Scopira narrays to be plotted. The plotter supports a variety of plotting styles 

and  criteria,  and  the  user-interface  allows  for  zooming,  panning  and  other  user 

customizations of the plot. An image viewer allows fully zooming, panning and scaling 

of narrays, useful for the display of image data. The viewer supports arbitrary colour 

mapping, includes a legend display and supports a tiled view for displaying a collection 

of many images simultaneously.  Miscellaneous widgets such as a  “joystick” control 

(that permits discrete, cardinal direction panning), VCR buttons (that present “play,” 

“pause,” etc. type buttons) and a random seed editor are also provided. A simplified 

drawing canvas interface is included that permits developers to quickly and easily build 

their own custom widgets. Finally, Scopira provides a  Scopira Lab facility to rapidly 

prototype and implement algorithms that need casual graphical output. Users code their 

algorithm as per usual, and a background thread handles the updating of the graphical 

subsystem and event loop.
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4.3.1 Model-View Plugin Framework

Scopira provides an architecture for logically separating models (data types) and 

views (graphical widgets that present or operate on that data) in the application. This 

model-view relationship is  then  registered  at  runtime.  At runtime,  Scopira  pairs  the 

compatible models and views for presentation to the user. A collection of utility classes 

for the easy registration of typical objects types such as data models and views are 

provided. This registration mechanism succeeds regardless of how the code was loaded; 

be it as part of the application, as a linked code library, or as an external plug-in. 

Third parties can easily extend a Scopira application that uses models and views 

extensively. Third party developers need only register new views on the existing data 

models  in  an  application,  then  load  their  plug-in  along  side  the  application  to 

immediately  add new functionality  to  the  application.  The  open source  C++ image 

processing and registration library ITK  [50][54] has been successfully integrated into 

Scopira applications at run time using the registration subsystem.

A model is defined as an object that contains data and is able to be monitored by 

views. A view is an object that is able to bind to and listen to a model. Typically, views 

are graphical in nature, but in Scopira non-graphical views are also possible. A project is 

a specialized model that may contain a collection of models and organize them in a 

hierarchical fashion. Full graphical Scopira applications are typically project-oriented, 

allowing the user to easily work with many data models in a collective manner. A basic 

project-based application framework is provided for developers to quickly build GUI 
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applications using models and views.

4.3.2 3D Visualization

A complementary subsystem provides the base OpenGL-enabled widget class that 

uses the  GTKGLExt  library  [43].  The  GTKGLExt  library  enables  GTK+  based 

applications to use OpenGL for 2D and 3D visualization. Scopira developers can use 

this system to build 3D visualization views and widgets, which allows for enhanced 

data exploration and processing. Integration with more complete visualization packages 

such as VTK [93] [116] is also possible.

4.4 Applications

Several  biomedical  data  analysis  applications  have  been  implemented  using 

Scopira  [66][79][81][82][100][101][102].  Some are in-house,  proprietary,  and highly 

specialized systems, while others are open source applications that are available to the 

biomedical  research  community  at  large.  These  applications  run  the  gamut  from 

confirmatory  to  exploratory  data  analysis,  image  processing,  pattern  recognition, 

classification, and visualization. We briefly present three applications developed using 

Scopira.  As  this  thesis  work  uses  Scopira,  this  demonstrates  possible  types  of 

applications that could benefit from this work.

One  Scopira-based  application  is  EvIdent® [79],  an  exploratory  data  analysis 

system for  rapidly  investigating  novel  events  in  a  set  of  two-  or  three-dimensional 

images  (e.g.  MRI,  infrared,  spectroscopic  maps,  etc.)  as  they  evolve  over  time  or 
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frequency (or  any other  analysis  dimension).  For  instance,  in  a  series  of  functional 

magnetic resonance neuroimages, novelty may manifest itself as neural activations over 

a time course (Figure 4). The core of the system is an enhanced variant of the fuzzy c-

means clustering algorithm [13]. Fuzzy clustering obviates the need for models of the 

underlying  requisite  biological  function,  models  that  are  often  statistically  suspect. 

EvIdent® offers  several  innovations:  (i)  biomedical  researchers  may  probe  for 

unanticipated but domain-significant  structure in  the data;  (ii)  flexible  generation of 

unbiased, testable models; (iii) rapid analysis of data in complex cognitive experiments; 

and (iv) excellent precursor and complement to any model-based inferential method.

Figure 4: Functional MRI activation map viewer in EvIdent®
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Visualizing high dimensional patterns and their relative relationships, is a useful 

and challenging technique that is  important  in  data  exploration and confirmation.  A 

Scopira-based application was developed to implement a new projection strategy, the 

Relative Distance Plane (RDP)  [66][100][101] which uses a similarity-based mapping 

requiring only a single computation of a distance matrix, for the visualization of high 

dimensional  patterns  and their  relative  relationships.  RDP allows  an  investigator  to 

visually  inspect  (Figure  5)  datasets  for  anomalies  prior  to  subsequent  analysis  (e.g. 

classification, regression, clusters). An important aspect of RDP is that certain distances 

are exactly preserved in a new 2D (or 3D) coordinate system. Give two (or three, in the 

3D case) reference patterns selected from the dataset, all other patterns are displayed 

without any distortion of their original relative distance to the reference patterns. RDP is 

a projection pursuit variant using directions defined by pairs (or triplets) of patterns 

from the dataset.

Another  Scopira-based  application  involves  the  analysis,  visualization  (via 

Scopira  and VTK  [93][116]),  and  interpretation  of  biomedical  images  using  optical 

coherence  tomography  (OCT)  [48],  an  optical  imaging  modality  that  provides 

micrometer  scale  resolution  morphological  images.  OCT is  similar  to  ultrasound in 

operation except that low coherent near infrared light is used instead of sound.  The 

light is focused onto a sample and back reflections from within the sample are recorded 

to  create  a  morphological  image  of  the  interior  structure  of  the  sample.  The  back 

reflections  occur  from  changes  in  optical  density  at  tissue  boundaries  and  cellular 
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structures. The three dimensional morphological images have an axial resolution of 10 

μm and a transverse resolution of 25 μm that is superior to standard ultrasound images. 

The  coherence  requirement  of  OCT  in  highly  scattering  biological  tissue  limits 

penetration depths to 2 mm. However, the method is fully implemented in fiber optics, 

allowing sub-millimetre probes to collect images via catheters and endoscopes [18].

Figure 5: RDP Separation Display

90



Chapter 4: Background: The Scopira Library

The elevation  and transfer  of  skin  flaps  is  essential  in  reconstructive  surgery. 

Clinical prediction of eventual tissue viability at the time of elevation can be inaccurate 

and lead to reconstructive failure.  A common example is that of mastectomy skin flap 

necrosis in the setting of immediate breast reconstruction.  A Scopira-based application 

was made to help specialists delineate demarcation lines that separate dead and viable 

skin areas for further processing [102].
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5 Design

5.1 Overview and Goals

This chapter presents the design overview and goals of the work.

5.1.1 Relation to Scopira

The  Scopira  Agents  Library (SAL)  is  the name given to  the message  passing 

library that is the result of this work.  Agents, in this context, refer to the objects that 

manage groups of SAL-tasks, and has no relation to agent-based computing (e.g. [75]). 

However, despite sharing a name with the Scopira library itself, SAL is a separate and 

library. To underscore, Scopira is a general library for application development while 

SAL is the message passing library that is the result of the research in this thesis.

SAL does use the Scopira library for certain general functions such as file and 
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network I/O and object  serialization,  and also has similar API styles and structures. 

However, SAL's core concepts and its implementation are independent of Scopira and 

SAL could be made to use any other library for these basic facilities.

5.1.2 Goals and Limitations

SAL's goals are to be an easier-to-use and deploy message passing library with 

adequate performance for a variety of use-cases. The target audience for such a library 

includes  interactive  application  developers  and  parallel  algorithm  developers  with 

moderate  performance  and  scalability  needs.  The  algorithms  should  have  moderate 

communication  needs,  that  is,  overall  algorithm  performance  should  not  be  highly 

sensitive to messaging throughput or latency.

Interactive  (for  example,  GUI  or  Web)  application  developers  (with  new  or 

existing  application  code  bases)  that  wish  to  utilize  parallel  processing  in  their 

applications, quickly and seamlessly, would ideally use SAL. Their applications would 

retain the same ease-of-use yet still be able to utilize multi-processor and (if detected) 

multi-host parallelism, increasing performance without application complexity.

Parallel  algorithm developers  who have  moderate  performance  and  scalability 

requirements may choose to use SAL for its ease of use and ability to quickly make 

parallel applications. Utilizing SAL also gives these developers the option of embedding 

their algorithms into deployable applications later on, if desired.

SAL's  advantages  are  of  course  not  without  their  trade-offs.  By  design  and 
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implementation, SAL may be less efficient and less scalable than other libraries. For its 

target audience, these sacrifices are acceptable, however, for some users other options 

may  be  preferable.  For  example,  SAL  is  not  designed  for  grid  computing  and 

communication intensive algorithms. SAL also does not, in its current implementation, 

utilize specialized communication hardware or protocols.

SAL's  object-oriented  design,  error  checking  and  buffering  makes  SAL have 

higher CPU and memory overhead than other optimized libraries, resulting in lower 

communication throughput and higher latency. SAL's current direct message routing 

implementation  and  simplistic  API  limits  scalability,  making  it  ill-suited  for  grid 

computing or similar large-scale applications.

5.1.3 Implementation Goals

SAL, by design, borrows a variety of concepts from both MPI and PVM. SAL, 

like PVM, attempts to a build a unified and scalable “task” management system, with an 

emphasis on dynamic resource management and interoperability. The tasks themselves 

are coupled with a powerful message passing API inspired by MPI. Unlike PVM, SAL 

also  focuses  on  ease-of-use:  emphasizing  automatic  configuration  detection  and 

deemphasizing the need for infrastructure processes.  Using operating system threads 

and  C++  objects,  SAL emphasizes  multi-programming  within  single  OS  processes 

(which  are  fastest  for  same-host  communication)  and  embedding:  providing  the 

complete implementation with the library (and thereby, the application). Applications 

94



Chapter 5: Design

always have an implementation of SAL available, regardless of,  or the availability or 

access to, cluster resources.

SAL introduces  high-performance computing  to  a  wider  audience  of  users  by 

permitting developers to build standard cluster capabilities into desktop applications, 

allowing those applications to pool their own, as well as cluster resources. This is in 

contrast  to  the  goals  of  MPI  (providing  a  dedicated  and  fast  communications  API 

standard  for  clusters)  and  PVM (providing  a  virtual  machine  architecture  among  a 

variety of powerful platforms).

SAL extends  the  core  Scopira  C++ library  (Figure  6).  It  provides  everything 

needed for developers to make cluster-aware applications, including a message passing 

API, implementations of this API and a host of services and other facilities. Developers 

may use SAL to make their  Scopira  applications  multi-processor  and cluster-aware. 

Although SAL development activities and research is ongoing, the core components 

have been used in a production environment.

In  SAL terminology,  an  “agent”  refers  to  the  “task”-managing  engine  in  the 

library that represents a node in the agent network. Tasks, as in PVM, are individual 

processing entities within the system that have their own identifier and message passing 

abilities.  This  agent  object  is  the  key  broker  between  the  application  code,  task 

processes and the agent network. An agent delegates the actual task management and 

message  passing  responsibilities  to  an  internal  “engine”  object.  The specific  engine 

implementation is chosen at application startup and can be based on user preferences 

95



Chapter 5: Design

(for example, the user may choose to not use an available cluster) and the local network 

configuration.  The  engines  can  differ  by  the  services  provided  and  by  scheduling 

policies.  Although  only  two  engines  (a  single-host  and  network-enabled  multi-host 

engine) are initially provided, additional engines (e.g. decentralized network topologies) 

may be added in the future.

Figure 6: The SAL API Stack

5.2 Messaging API

SAL provides  an  object-oriented,  packet  based  and  routable  API  for  message 

passing (like PVM, but  unlike MPI).  This  API provides  everything needed to build 

multi-threaded, cluster-aware algorithms embeddable in their applications.

The API uses a few key object-concepts to form the API stack. This API stack 

contains the following objects:  tasks (algorithm processes),  contexts  (a collection of 

methods  that  a  task  uses  to  communicate  with  other  tasks)  and  send_msg objects 

(corresponds  to  a  single  messaging transaction).  An overview of  how these  objects 
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interact is as follows:

● The SAL engine chooses a user-task to run (usually from a queue of tasks)

● The user's task object has its run method called and is passed a context object

● The task uses this context to create send_msg objects (a complimentary object, 

a recv_msg object, must be used to receive such messages).

This is illustrated in Figure 7:

Figure 7: A typical call sequence (proceeds from top to bottom)
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5.2.1 Tasks

Tasks  are  the  core  objects  that  developers  build  for  the  SAL system.  A task 

represents a single job or instance in the agent system, which is analogous to a process 

in an operating system. However, they are almost never separate processes, but rather 

grouped into one or more agent processes that are embedded into the host application. 

This is unlike most existing parallel APIs, that allocate one OS process per task concept, 

which, although conceptually simpler for the programmer, incurs more communication 

and startup overhead, and is OS dependent. The tasks themselves are language-level 

objects  but  are  usually  assigned  their  own  operating  system  threads  to  achieve 

preemptive concurrency.

Tasks have the following features and properties:

● Logic initialization and shutdown in their constructor and destructor (as with any 

C++ object);

● A core “run” method, which  is the central method that is called when a task 

should perform its work.

● User specific methods and state variables.

The developer's focus is primarily with the task's run method. It is this method 

that  is  passed  a  reference  to  a  “context”  object,  which  provides  access  to  the  core 

messaging API. The run method signals the agent system its result code (e.g. whether it 

is done or should be run again), by returning integer code. Possible signals include: 
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process completion, process yielding,  sleep until message arrival and sleep for a time 

period. The API in detail:

// interface and parent class of all tasks
class agent_task_i {

// main run method in the task interface
int run(task_context &ctx);

};

5.2.2 Context Interface

A context object is a task's gateway into the SAL message passing system. There 

may be many tasks within one process and each will have a different context interface – 

something not feasible with an API with a single, one-task-per-process model (as used 

in PVM or MPI). Being able to embed all the tasks as threads in one process is vital for 

application embeddability, a core goal of SAL. This class provides several facilities, 

including:  task  creation  and monitoring;  sending,  checking and receiving  messages; 

service registration; and group management. It is the core interface a developer must 

use to build parallel applications with SAL. A selected, annotated API list is shown:

class task_context {
// returns the number of CPUs is the system(s)
int universe_size(void);
// returns this task's UUID
uuid get_agent_id(void);
// spawn sub tasks and form a task group
uuid launch_group(int num_processes);
// is the task with the given ID still “alive”
bool is_alive_task(uuid taskid);
// is there a pending message from the task with the 

given ID
bool has_msg(uuid taskid)
// get this task's group id/index (when in a group)
int get_index(void);
// get the size of the group (when in a group)
int get_group_size(void);
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// a barrier synchronization call, for a group
void barrier_group(void);
// wait until all others in my group terminate
void wait_group(void);

};

Data is actually sent and received via  send_msg and  recv_msg objects, which 

take a context object as a parameter during their construction. These objects are outlined 

in the next section.

Central to the messaging system in SAL is the concept of  Universally Unique 

Identifiers or  UUIDs  (sometimes  known  as  GUIDs).  UUIDs  are  128-bit  integer 

identifiers that can be considered, for all practical purposes, to be “unique within all 

keys  in  the  universe.”  More  importantly,  they  need  not  be  centrally  generated  or 

managed, allowing for distributed systems to generate UUIDs without a central source, 

yet still be reasonably confident that keys may intermix. These are analogous to PVM's 

Task  IDs  (TIDs)  in  concept,  but  differ  in  implementation.  In  PVM, a  PVM server 

encodes its sequence ID within all the task IDs it generates, a sequence number it does 

not know until the master server assigns it upon joining the virtual machine. Within 

SAL, UUIDs may be generated at anytime.

UUIDs have wide appeal and are used in a variety of systems, from distributed 

software systems to OS level services. The concept of universally unique identifiers that 

can be generated in a distributed fashion is powerful and applicable to many domains 

and  problems.  To  generate  these  IDs,  developers  first  employed  the  technique  of 

hashing various machine characteristics (such as a network machine address (MACs), 

100



Chapter 5: Design

Internet address (IPs), etc.) and combined with a time stamp and a random number. 

Over time, privacy concerns over the traceability of UUIDs  containing MACs or IPs 

lead  to  the  use  of  strong  random  number  generation  facilities  in  many  operating 

systems. The operating system monitors a variety of random events in the system, such 

as  mouse movement  or  network  noise to  build  an entropy pool  from which  strong 

random numbers can be made.

In SAL, all objects such as agents and tasks have associated UUIDs. Tasks can 

then publish and share this ID with other tasks or with the user. UUIDs in Scopira are 

represented  as  small,  convenient,  opaque  C++  objects  that  can  be  manipulated, 

compared and stored, similar to primitive data types in the language.

Developers often launch a group of related instances  simultaneously,  and then 

systematically  partition  the  problem  space  for  parallel  processing.  To  support  this 

popular paradigm of development, SAL's identification system supports the concept of 

groups. A group is simply a collection of  N task instances where each instance has a 

groupid∈[0,N-1].  The  group  concept  is  analogous  to  MPI's  communicators  (albeit 

without  support  for  complex topologies)  and PVM's  named groups.  This  sequential 

numbering of task instances allows the developer to easily map problem work units to 

tasks. Similar to how PVM's group facility supplements the TID concept, SAL groups 

built upon the UUID system, as each task still retains – and may use – their underlying 

UUID for identification.
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5.2.3 Message Sending Objects

In SAL, the sending and receiving of data is done via dedicated  send_msg and 

recv_msg objects, which utilize the context interface to perform their work. It is these 

objects that have a collection of writing and reading methods for sending data over the 

network,  not  the  context  object  itself.  These  objects  reuse  the  underlying  Scopira 

serialization system, allowing the developer to reuse their object serialization code for 

both SAL and for regular file I/O.

For example, the  send_msg class itself does its specific work in its constructor 

(setting up its destination) and destructor (actually sending the data). All the writing 

method implementations are reused from Scopira, specifically the  bin64oflow class, 

which implements the method in the otflow interface. It is to this interface that object-

serialization code is written too. A selected, annotated API of send_msg follows:

class send_msg {
send_msg(task_context &ctx, int destination);
// destructor, does the transfer via RAII:
~send_msg();
// inherited type serialization methods
void write_bool(bool);
void write_char(char);
void write_short(short);
void write_int(int);
void write_size_t(size_t);
void write_int64_t(int64_t);
void write_long(long);
void write_float(float);
void write_double(double);
void write_string(const std::string &);
template <class T> void write_generic(const T &);
void write_bool(bool);
size_t write(const byte_t *, size_t);
size_t write_byte(byte_t);
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template <class T>
size_t write_array(const T*, size_t);

size_t write_void(const void *, size_t);
}
Any object may be sent in a type-safe manner, from basic primitive variable types 

to  compound  objects.  Unlike  MPI  (and  similar)  message  passing  interfaces,   this 

decidedly object-oriented design provides send and receive functions that are usable at 

any time, outside of any transactions. This design has various benefits:

● Serialization:  Any data types or objects  may be sent in a type-safe manner, 

drastically reducing programmer errors. This reuses the powerful serialization 

mechanism  in  Scopira  (Section  4.1.2),  enabling  programmers  to  reuse  their 

serialization-compatible objects for other tasks.

● Packets: Data is  transparently  collected, grouped and sent in discrete packets, 

which simplifies programming and debugging.

● Scoped  transactions:  Utilizing  RAII  (Section  3.4),  packet  sending  and 

receiving are done via dedicated code blocks. In particular, a send_msg object is 

constructed  at  the  start  of  the  scope  and  then  populated  with  data.  When 

execution leaves the dedicated scope block, the send_msg object's destructor is 

called,  triggering the actual  sending of the message.  This  has all  the typical 

benefits  of  an RAII  application:  the user does not  need to  remember to  call 

explicit commit-like methods, and may exit the scope in a variety of ways (for 

example, via a return or break statement).

These  concepts  are  best  illustrated  with  a  short  code  example.  The  following 
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annotated code snippet demonstrates a simple task's run method that sends some data. 

Figure 7  provides a visual illustration of the various objects and their interactions:

int my_task::run(task_context &ctx)
{

narray<double, 2> a_matrix; // a matrix of doubles

// the following is a messaging sending block
{

// construct the message object
send_msg M(ctx, 0);

// write a basic integer
M.write_int(100);
// write a whole object, in a type-safe manner
// no need to specify array length or type
a_matrix.save(M);

} // message is sent as execution leaves this scope

// at this point the data is sent and another message
// transaction can begin

}

5.2.4 Task Creation and Monitoring

Tasks may spawn or launch other tasks (Figure 8). In the basic case, one task is 

spawned,  which  is  useful  for  client-server  pairings  or  when  one  task  “calls”  (and 

expects an answer from) another task (or tasks) to perform a certain computation. As in 

PVM, there is no rigid relationship between tasks, allowing this flexible mechanism to 

be used to build a variety of systems. Finally, tasks in SAL are language-level objects, 

requiring the creating task to specify the C++ class names of the new tasks. In PVM and 

similar systems that model tasks around OS processes and applications, the caller would 

have to specify file path names to actual programs, a value that would vary by OS and 

by installation.
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Figure 8: Example of nested task group spawning and communication

Groups of tasks may also be launched. A task group is simply a collection of task 

instances of the same task type that can refer to each other via sequential IDs as well as 

UUIDs. This permits the developer to use simpler notation when partitioning a problem 

space into parallel processes.

In  all  cases,  the  context  interface  allows  any  task  to  monitor  the  lifetime  of 

another process. A task may also request that another task be interrupted and destroyed 

– however SAL can only do this between a task's run calls as thread cancellation is 

usually neither safe nor portable.

The  task  launching  mechanism,  combined  with  the  scalable  UUID-based 

identification  system,  permits  the  construction  of  a  variety  of  communication 

topologies. For example, each task within a task group can also spawn its own group, 
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creating  large  processes  hierarchies.  Another  situation  includes  coordinator-like 

processes  that  can  orchestrate  a  collection  of  groups  and  other  processes,  basically 

facilitating disjoint tasks to perform a greater goal. Certain tasks may be persistent or 

server-like, providing standard services, such as storage or random number generation, 

to new tasks. All these options present a certain dynamic flexibility within the system, 

where tasks live, die and spawn within the system, while being members of a global, 

universally addressable messaging universe.

5.2.5 Messaging

The messaging system in SAL is built on both the generic Scopira I/O layer as 

well as the UUID identification system. SAL employs a packet-based (similar to PVM) 

message system, where the system only sends and routes complete messages, and not 

the individual data primitives (as MPI can and often does) and objects within them. 

Only after the sending task completes and commits a message is it processed by the 

routing and delivery systems. The SAL agent uses OS threads to transport  the data, 

freeing the user's thread to continue to work. In contrast, MPI users that wish to utilize 

overlapping IO require an implementation that specifically supports it, such as USFMPI 

[22] (this can be somewhat emulated in standard MPI by using non-blocking functions).

The Scopira I/O system (from which the message system API is based) uses a 

three  level  object-oriented  system for  data  serialization  (the  process  of  converting 

objects to a stream of bits).
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At  the  bottom level  of  this  system  is  the  binary  interface  and  its  various 

implementations. Fundamentally, this level has two types of implementations, “sinks” 

or final stream terminators and binary filters. A sink begins (or ends) any stream chain 

by taking the data out of or  putting it  into the stream system. Examples include files, 

network sockets,  and memory blocks. A filter  simply converts one binary stream to 

another, for example a cryptographic cypher, or a lossless data compressor.

The second interface level introduces the concepts of primitive types to the I/O 

interface. This interface presents various methods for writing and reading a variety of 

primitive types (such as integers and strings) and converting them into binary streams. 

Implementations include an ASCII-representation converter (useful for debugging), a 

compact binary converter and a binary converter that always stores data in 64-bit format 

(useful for 32-bit and 64-bit interoperability).

The final interface level builds on the primitive type API and adds full object 

serialization. This allows any object that implements the serialization interface to be 

written  to  an  I/O  stream.  The  Scopira  object  serialization  implementation  includes 

support for object-caching and reference bookkeeping, which allows objects that have 

multiple references to be correctly serialized.

To send data  packets with SAL, the task instantiates a  send_msg object.  The 

sender  provides  the  destination  task(s)  either  by  UUID,  group  index  number,  or  a 

broadcast flag. The send_msg message packet is then populated with data via its “type-

level” standard Scopira I/O interface. Finally, only when the message object is starting 
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the process of its destruction, are its contents sent to the routing system.

Sending (committing) the data during the send_msg object's destruction (that is, 

via its destructor) was the result of an intentional design decision. In C++, stack objects 

are destroyed as they exit scope. The user should therefore place a send_msg object in 

its own set of scope-braces, which would constitute a sort of “send block”. All data 

transmissions for the message would be done within that block, and the programmer can 

then be assured that the message will be sent at the end of the scope block without 

having to remember to do a manual send commit operation.

Similarly,  the receiver uses a  recv_msg object to receive,  decode and parse a 

message packet, all within a braced “receive block.”

Finally, the message system includes a complete recipient and polling API. The 

programmer may specify a filter for incoming messages from a specific sender, any 

task, any task within the same group, or a more complex specification using a basic 

boolean logic based query expression. Recipients may also poll for messages rather than 

block  waiting  for  them,  allowing  for  concurrent  processing  and error  condition 

checking.

5.2.6 Services

The SAL system permits users to build services: facilities that are provided by 

persistent  or  long-running  tasks  within  the  system.  SAL enables  tasks  to  register 

themselves as service providers and provides configurable searching facilities so that 
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other providers may be discovered. Services can provide any number of functions, such 

as random number generation, centralized data set storage, task management services, 

etc.  Their  persistence  between  client-task  runs  makes  them useful  for  a  variety  of 

domains. As tasks are lightweight processes (namely threads) rather than OS processes 

(as they are in PVM), services such as a name server (which is built into PVM itself) are 

implemented as service-providing tasks within SAL.

A task is said to provide some well known user-defined service if it supports that 

service's messaging protocol. SAL may find service providers on behalf of a task, but 

after the initial introduction, the initiator must then further probe the resulting tasks for 

more  specific  information.  Services  are  a  protocol  level  contract  rather  than  a  new 

interface or type and, as such, SAL itself cannot verify or enforce the completeness of 

any task's service implementation.

5.3 Scheduling Engines

The  SAL  scheduling  engines  implements  the  SAL  API.  The  engines  are 

responsible for task management, message transport and processor management. SAL 

currently  includes two types of engines, a “local” engine that uses operating system 

threads on a single host machine and a “network” implementation that is able to utilize a 

network  of  workstations.  The  network  engine  is  a  functional  superset  of  the  local 

engine.
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5.3.1 Local Engine

The “local” engine is a basic multi-threaded implementation of the SAL API that 

is embedded completely within the user's application process (Figure  9).  It uses the 

operating system's  threads  to  implement  multiprocessing within the  host  application 

process.  The  engine  lacks  the  networking  abilities  to  manage  separate  nodes  and 

intercommunication but is able to use all the processing cores on the host machine by 

using operating system threads within the host process.

Figure 9: Embedded local-engine in a user application process

As this engine is contained within a single-process, it  is  the fastest  to use for 

application development and debugging.  Using the local engine, the programmer may 

fully design and test their parallel algorithm and its messaging logic before moving to a 

multi-node  deployment.  Furthermore,  as  multi-processor  and  multi-core  desktop 
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systems become more commonplace, this basic engine is perfectly suited for single-host 

deployments and users who may not need full cluster resources. The local engine is 

always available and requires no configuration from the user. Developers need not write 

dedicated non-message passing versions of their algorithms simply to satisfy users that 

may not want to go to the trouble of deploying a cluster.

The  implementation  of  the  local  engine  is  relatively  straightforward,  as  it  is 

contained  within  the  host  application  process.  The  engine  itself  protects  all  the 

administrative information in a mutually exclusively accessed area, protected by thread 

“mutex” primitives. The engine maintains:

● A list of “worker” threads and their operating state;

● The next task to check for processing;

● A mapping of service UUIDs to tasks that implement specific services;

● A process table of tasks,  indexed by their  UUIDs. For each task, the engine 

maintains  the  current  running  state,  group  peers  (if  any),  and  the  incoming 

message queue.

Task  instantiation  is  straightforward.  A  new  process  entry  is  created  and 

associated with a task with a  running state  set  to  ready.  The engine then adds new 

worker threads to the thread pool, maintaining at least as many worker threads as active 

tasks. Finally, the thread pool is notified, so that an idle worker thread selects and runs 

the new task. The thread pool size is never reduced, only increased – this is done to 
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prevent resource intensive thread creation/destruction cycles. While for many process 

communication patterns there may exist some optimal thread pool size that is less than 

the number of active processes, finding this number is non-trivial, as the engine would 

have to determine if blocked tasks are waiting for stopped tasks that require new work 

threads. For example, as soon as any task waits for a message from another task, the 

engine quickly deteriorates into the worst case: as many threads as active tasks.

Message routing is straightforward and similar to PVM. The engine wraps a small 

message header object around the sender's data packet and appends this directly to the 

destination task(s) event queue. Each event queue is itself protected by a thread mutex 

and notification condition object, so that the waiting task may immediately process the 

new data without a chance of thread conflicts (i.e. race condition). Each message header 

object treats its data payload in a read-only manner. This allows the various destination 

tasks for a broadcast message to share one copy of the data payload, greatly reducing 

memory duplication.

The local engine does no load balancing. As the engine provides as many worker 

threads as active tasks,  it  relies  on the operating system's ability to  manage threads 

within the processors. This works quite well, when the number of tasks instantiated into 

the system is a function of the number of physical processors, as encouraged by the API 

(via reasonable defaults). Since there is only one primary user/initiator in a local engine 

(that  is,  the  host  application's  user),  the  number  of  task  groups  in  the  system  is 

predictable (often, one).
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In  summary,  I  found the  implementation  of  the  local  engine  to  be  relativity 

straightforward.  Without  the  complexities  of  network  communication,  the  engine 

implementation itself is simply a collection of shared associative arrays with various 

levels of mutexes and conditions all  shared by a group of worker operating system 

threads. This makes for a  reasonable reference implementation of the API, useful for 

both debugging and for production deployments where the user's desktop machine is of 

sufficient processing power.

5.3.2 Network Engine

The  network  engine  implements  the  SAL API  over  a  collection  of  machines 

connected by an IP-based network; typically Ethernet. The cluster can be a dedicated 

compute cluster, a collection of user workstations, or a combination. The engine itself 

provides  inter-node routing and management,  leaving the local  scheduling decisions 

within  each  node  up  to  a  local-engine  derived  manager.  The  network  engine  is  a 

functional superset of the local engine, and uses the same local engine scheduling at the 

single host level.

The network engine implementation is a functional superset of the local engine. 

That is, the network engine also manages multiple tasks on a single host using operating 

system  threads  and  basic  message  queuing.  A single-host  network  deployment  is 

functionally similar to a local engine deployment.
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5.3.2.1 Topology

A SAL network  stack  has  two  layers  (Figure  10).  The  agent transport  layer 

contains the agents themselves (objects that manage all the tasks and administration on 

a single process) and their TCP/IP based links. The agents virtualize and present the 

messaging  layer,  where  tasks  can  send  messages  to  each  other  using  their  UUIDs, 

ignorant  of  the  IP layer  or  the  connection  topology  of  the  agents  themselves.  For 

simplicity and efficiency, a SAL network (like PVM) has a master agent residing on one 

process.  This  master  agent,  in  addition  to  participating  in  compute  activities,  is 

responsible for the allocation, tracking and bookkeeping of all the tasks in the system. It 

is assumed that within a single site deployment of an SAL network, at least one stable 

server (i.e. non-user desktop) machine  can be found to assume this role. This master 

role need not be deliberately assigned by the user – the first network based agent will 

automatically assume this role if no other master agent is found. A centralized master 

allows for simpler and faster task administration.

The  network  engine  uses  a  combination  of  URL-like  direct  addressing  and 

UDP/IP broadcast  based auto-discovery in building the agent  network.  The simplest 

sequence is  to start  an application in  auto discovery mode.  When a network engine 

starts, it searches the local network for any other agent peers and, if found, joins their 

network. If no peers are found, then it starts a network consisting of itself as the only 

member and assumes the master agent role. Users may also specify the master's URL 

directly, connecting them explicitly to a particular network.
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Figure 10: The SAL Network Stack

The Scopira package includes a SAL shell application that can be used in more 

specialized  deployments.  This  application  simply  loads  any  external  application 

modules  and  proceeds  to  join  or  create  a  SAL network.  It  is  intended  for  system 

administrators and users who want to launch worker processes to which the desktop 

applications connect.

Agents within the system utilize two different routing policies as needed: fully 

connected  agents  that  perform  direct-routing  and  agents  that  proxy  all  their 

communication via a master agent. The former are usually dedicated compute nodes, 

which can be considered relatively stable and network connected, and would benefit 
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from increased speed and reduced latency by direct TCP/IP communication with other 

peers. The latter type – agents that communicate via the master – are more for nodes 

that are “unreliable” (worker agents deployed on user desktops,  for example) or for 

desktop applications and graphical front ends that do not need the superior performance 

of direct communication. Routing through the master also permits communication when 

firewall  or  network  issues  (such  as  the  cluster  nodes  being  on  their  own  private 

network) would otherwise limit communication.

The master agent is critical  for message routing within the network. First,  the 

master  tracks  the  physical  location  of  all  the  other  agents  within  the  system. 

Specifically,  it  is  able  to map an agent's  UUID to their  TCP/IP addresses,  which is 

required  for  peers  to  do  direct  peer-to-peer  routing.  Finally,  the  master  does  proxy 

routing for agent nodes that are not doing direct routing. This design makes routing 

straightforward in the agent network, as all messages are sent directly to the peer or 

directly to the master agent (to which all agents always have a direction connection).

These  flexible  routing  and  deployment  options  permit  a  variety  of  different 

network  topologies.  Figure 11 contains  a  montage  showing four  types  of  routing 

topologies:  dedicated  compute  cluster,  desktops  as  cluster  clients,  ad-hoc  desktop 

cluster and volunteer (idle time) computing.

The  traditional  compute  cluster  topology  (Figure  11 (a))  has  a  collection  of 

dedicated  compute  hosts  (usually  on  a  dedicated  network  switch  or  possibly  other 

specialized  communication  hardware)  directly  connected  for  optimal  performance. 
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Users connect to the cluster directly to submit and monitor running jobs.

A more seamless connection method involves users running SAL-based desktop 

applications (Figure 11 (b)) on their desktop hosts that automatically find and connect to 

an already running cluster master agent. The user's agent submits jobs to the master for 

computation,  who then assigns sub-jobs to work nodes within its  cluster.  The user's 

agent itself usually does not do any computational work (and definitely not the work of 

other users who may also be connected to the same master agent) but simply monitors 

and retrieves results of running jobs. Finally,  the user agent may disconnect from a 

running  network  and reconnect  later,  making long running jobs  independent  of  the 

reliability of desktop clients.

Desktop users can also form their own ad-hoc compute cluster (Figure 11 (c)) by 

simply starting their SAL-enabled desktop applications. This is useful, for example, if 

the users lack the hardware resources for a dedicated compute cluster, lack the know-

how or are mobile users. The first application instance will, upon not finding any other 

instances, start a new agent network with itself as the master. Subsequent application 

instances will  connect  to this  master,  building up the ad-hoc compute network.  The 

users may now run jobs from their applications that will automatically be deployed on 

this ad-hoc cluster.

The ad-hoc desktop  and  dedicated cluster topologies are similar, in that all the 

nodes are (logically) interconnected. However, in practice, the ad-hoc cluster may  be 

more dispersed, with many intermediate routers and switches separating the instances.
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Volunteer-based  computing  (Figure  11 (d))  uses  the  idle  processing  time  on 

desktop  (and  other  hosts)  at  a  site  to  perform  computation  work.  A SAL-enabled 

application  would  be  installed  (either  by  the  user,  or  site-wide  by  a  system 

administrator) to run at start-up with a low scheduling priority (so as to not interfere 

with the host's  regular  duties).  The application would find and connect  to  the local 

dedicated master and begin requesting and processing work. This topology effectively 

gives a site free computing resources, as it harnesses otherwise wasted processor cycles.

Figure 11: A sample of possible network deployment topologies

Finally,  the  same SAL-enabled  application  may be run in  all  these  topologies 

giving  the  end-user  flexibility  in  deciding  how  they  would  like  to  deploy  their 
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processing tasks. The topologies can also be  combined, further adding to deployment 

options.

5.3.2.1 Task Management

In addition to its critical routing functions, the master agent is also responsible for 

all  the  task  tracking  and  management  within  the  network.  By  centralizing  this 

information,  load  and  resource  allocation  decisions  can  be  made  instantly  and 

decisively.

For each agent peer, the master tracks its load, routing policy (direct or indirect) 

and task running policy. Specifically, each agent is able to specify what types of jobs it 

is willing to accept: all jobs, no jobs (useful for desktop nodes or front end nodes) or 

only self-initiated jobs (for agents that are present only for their own jobs).

For each task, the master tracks its network location (on which agent it resides) 

and its running state. The master gives this information to slave agents on demand, as it 

is required for direct message routing. The slaves then cache the location information, 

greatly  reducing  unnecessary  redundant  requests  while  occasionally  flushing  or 

updating their caches as needed. The master's records are definitive and always reflect 

the real state of the network.

All task instantiation requests are handled by the master agent. When a task within 

an agent requests the creation of more tasks, the request is routed by the hosting agent to 

the master agent. Based on the current loads and hosting policies of the various  non-

master agents, the master relays the request to the chosen agents. The agents then create 
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the actual tasks, report back to the master, which in turn reports back to the initiating 

task's agent and task.

The master agents use the number of active tasks on each agent as the primary 

metric of processor load. This tactic is sufficient for most scenarios; however for more 

compute  loaded  systems  (that  is,  systems  with  other  programs  and  users),  a  more 

sophisticated allocation policy  will be required. In particular, examining the operating 

system reported system load may give a better picture of the load of the machine. Of 

course,  the  agents  would  then  be  susceptible  to  the  operating  system's  metrics,  its 

variances and any reporting anomalies, but it would factor in other applications running 

on  the  machine,  as  well  as  appropriately  rate  threads  and  processes  that  are  not 

processor bound (as opposed to disk or network bound).

5.4 Sample Services

Services or service tasks within SAL are tasks that provide well known functions 

and services to other tasks. These services are typically persistent (much like a server 

process in an operating system) and wait patiently to process requests from client tasks. 

They may be  started  at  network boot  time or  demand-loaded as  needed.  The tasks 

themselves receive no special treatment nor use any special APIs; they are normal tasks 

within the agent system.  An agent  is  defined by the services it  provides via  a  well 

known  and  published  messaging  protocol.  Service  providers  may  be  application-

specific or general utility function providers.
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Service providers may play a variety of roles. A monitor service allows tasks to 

register themselves as monitors of other task(s), either being notified or perhaps killed 

when  the  watched  tasks  terminates.  This  service  forms  the  basis  for  fault  tolerant 

computing,  providing  cleanup  services  for  when  key  tasks  within  a  job  abruptly 

terminate.  An  administration service can  provide  the  basic  functionality  needed for 

general  system monitoring  and  administration.  Client  tasks  can  perform automated, 

routine maintenance as well as present this information to the user, both graphically and 

in a report. A job manager service  (where “job” refers to a collection of cooperative 

tasks) is used to track user-visible jobs in the system. This allows a user to “detach” or 

disconnect their client application from the agent system and leave their jobs running 

unattended. Upon return, the user is presented with a list of jobs (and their completion 

states).  The  user  then  resumes  interacting  with  a  selected  job.  Specific  devices, 

instruments,  and  license-limited  software  can be  accessed  through  a  representative 

service. This allows a unique resource to be protected and managed by a sole process, to 

whom all tasks must submit requests. For specific applications, pseudo-random number 

generation may  also  be  centralized.  This  allows  job  reproducibility  (critical  for 

algorithm testing, development and scientific publishing), as a distributed set of tasks 

must still contact a single, managing source for their random number sequences. Finally, 

a file or data set service may provide centralized access to data files. This may be done 

for ease of use (consolidation of all the files into one name space), access control or 

simply because the files are only available  at  fixed agents/hosts  (this  is  particularly 

121



Chapter 5: Design

useful  for  cluster  configurations  without  a  shared  file  system).  Arbitrary  user 

authentication and access control may also be implemented to further refine the files 

available to a particular task or job set.

5.5 Deployment

SAL is designed to allow developers to make parallel applications that require no 

special  configuration  from  end  users.  This  is  vital  to the  goal  of  making  parallel 

applications  easy  to  use.  This  is  achieved  using  a  variety  of  techniques.  First,  the 

complete messaging and routing engine is included in the programming library itself, 

and is thereby embedded in the application. Users do not need to install and configure 

additional framework or infrastructure software.  Users without cluster resources can 

still  use  the  always-available  local  engine,  which  provides  parallelization  through 

operating system threads. This vastly increases an application's potential user base by 

lowering  the requirements  to  install  and run the software,  specifically,  the need for 

cluster hardware and software.

SAL-based  applications  may  be  configured  (by  the  user  or  their  system 

administrator) to automatically seek out other agent peers on the local network. If other 

peers are found, then the agent will automatically join the existing network. If none is 

found, then the user's desktop can either start its own network (with itself as the only 

member) or proceed to use the local engine. This is useful when dedicated compute 

resources  are  unavailable  or  network  access  is  inconsistent  –  particularly  useful  to 
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laptop users and for smaller institutions with less information technology resources.

The SAL networks themselves may be formed in an ad-hoc manner by the user's 

desktop application  instances,  via  auto  network discovery.  System administrators  or 

users may setup stable agents on dedicated, always-available hardware providing a pool 

of reliable compute resources to all SAL-driven applications within a site.

Finally, Scopira and SAL are multi-platform. Primary platforms include Microsoft 

Windows  and  Linux,  with  Apple's  OS  X  and  various  UNIX  operating  systems  as 

secondary platforms. Users now no longer need to bother with learning how to access 

and use the local Linux-driven computer cluster,  but can instead run their  Windows 

based desktop application,  which will  seamlessly communicate  with the  cluster  and 

other peer nodes. This is possible as SAL is designed to be a multi-platform library 

suitable for developing  applications on all the major desktop platforms. The network 

and object-serialization layers in SAL (inherited from Scopira) take care to specify data 

type sizes and byte-order, permitting data messages to be transferred between nodes of 

differing processors and operating systems.
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6 Experiments

6.1 Introduction

This  chapter  presents  the  experimental  design  for  testing  the  performance, 

usability  and  application  integration of  SAL.  Through  a  variety  of  metrics,  these 

experiments will gauge the Scopira Agents Library (SAL) along three major axes:

● Performance: how fast are SAL applications. A set of metrics  will be used to 

objectively quantify the communication and management overhead a SAL-built 

(compared to other offerings) application will incur.

● Usability: how easy it is to develop a parallel application using SAL, compared 

to other offerings. A set of metrics will be used to correlate the overall ease-of-
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use, amount of work and debugging time a programmer will experience when 

using the library. In addition to these objective metrics, several subjective case 

studies will be presented to evaluate difficult-to-quantify benefits.

● Application Integration: how easy is  it  to integrate  SAL into a stand-alone 

application  that  could  be  used by non-technical  users.  Embedding  SAL into 

desktop applications shares the performance benefits of parallel computing with 

groups of users that may have lacked the programming or technical background 

that  may  be  necessary  to  run  parallel  algorithm  implemented  with  more 

established libraries. Subjective measures and anecdotal use-cases will be used, 

as such benefits are difficult to quantify.

If the design and implementation goals of SAL are successful, these experiments 

should  show  that  SAL  is  more  usable  than  comparable  libraries  with  sufficient 

performance in its targeted use cases.  SAL will be shown to integrate into stand-alone 

applications, usable by non-technical users. The SAL will be somewhat less efficient in 

more  demanding configurations  but  for  its  intended configuration  it  should  provide 

acceptable performance (negligible differences in overhead) compared with the leading 

message passing libraries. Recall that, by design, SAL sacrifices some performance for 

usability.
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6.1.1 Setup

6.1.1.1 Compared Libraries

The experiments will compare SAL-created programs to:

● Uniprocessor: a standard, non-parallel implementation. This version is a basic, 

non-parallel  version  that  is  free  of  any  communication  or  setup  code.  This 

version gives the optimal performance on one processor and is the baseline for 

all other comparisons.

● Threaded:  a  single-machine,  preemptive  threaded  version,  using  POSIX 

Threads. This version cannot scale past the processors in a single host. However, 

utilizing its shared memory architecture, it is expected to be the fastest (have the 

least overhead) for single host cases.

● MPI (Messaging Passing Interface): a version created using an open-source 

MPI  implementation  (such  as  LAM  [20] or  MPICH  [42])  library,  which 

conforms to the MPI specification. This API is the current  standard library for 

writing parallel programs. This version  will be tested in all cases, both multi-

process with a single host and with multiple networked hosts. The standard C 

version  of  MPI  will  be  used,  rather  than  the  lesser  used  C++ version.  The

C++ version adds little in the use of object-oriented or generic programming 

styles  to  the  MPI  API,  and  keeps  the  same overall  style  of  communication 

functions as those in the C version.
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● PVM (Parallel Virtual Machine): a networked version using the established 

PVM library. This version will be tested in all cases, both multi-process with a 

single host and with multiple networked hosts.

The core of the experiments will be the comparisons with MPI and PVM, as these 

libraries (MPI more so) are the leading message passing libraries for parallel computing. 

The uni-process and threaded cases provide ideal performance baselines.

6.1.1.2 Test Programs

Two basic algorithms will be developed for the tests:

● Boss-worker  Random  Search: This  algorithm  implements  a  rudimentary 

version of Stochastic Feature Selection (SFS) [80], a feature-reduction strategy 

that  aids  in  the  classification  of  biomedical  data  sets.  This  “embarrassingly 

parallel” algorithm lends itself to the boss-worker organization model (Figure 1 

(a)).  The workers request the data set  and initialization information from the 

boss,  perform  the  required  amount  of  work,  and  submit  their  results  on 

completion.  There  is  no  communication  between  workers,  leading  to  less 

demand  on  the  communication  hardware  and  software.  The  organizational 

model has built-in load balancing: faster workers will simply do more tasks and 

will not be held up by slower workers.

● Peer to peer Conway's Game of Life: This algorithm implements Conway's 

Game of Life, a classic, deterministic cellular automaton played out on a two-
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dimensional matrix. Each iteration of the algorithm produces a new matrix based 

entirely on the previous one. This task is implemented in a peer to peer fashion 

(Figure 1 (b)), where each peer processes a subset of the matrix and exchanges 

border  information  with  its  neighbors.  This  lock-step  algorithm is  somewhat 

communication intensive, as is common in many image processing algorithms, 

and will serve as a more rigorous test of the communication performance of the 

various libraries.

These  two test  programs  will  compare  how the  libraries  handle  two different 

parallel program organizational models with different communication requirements.

A pseudo-code outline of the algorithms is provided in  Appendix A: Algorithm

Pseudo-Code, while the full source code is available in electronic form (Appendix B:

Electronic Files).

6.1.1.3 Test Hardware

The following hardware will be used:

● “Single-Node,” One 8 Core Node: For the single-node tests, an eight core (via 

two four-core Intel Xeon processors) machine running Linux, will be used.

● “Multi-Node,” Fourteen 2 Core Nodes: For the cluster/networked hosts tests a 

cluster  of  14  nodes,  each  with  two  AMD  Opteron  processors  each  running 

Linux, will be used. The nodes will be connected via a standard, but dedicated, 

gigabit Ethernet switch.

128



Chapter 6: Experiments

These two configurations will test single-node and multi-node parallel scalability, 

showing the effects of network transmission overhead on performance.

6.2 Assessing Performance

Performance  of  the  libraries  will  be assessed  by  submitting  the  programs  to 

various  tests.  The work  loads  will  be of  fixed  size,  sufficient  to  return  measurable 

timing results. The tests  will  vary the number of processors to give insight into the 

scalability of each program and library combination. All performance results  will be 

normalized to work done per processor, for easy comparisons.

There  will  be five  implementations  (one  for  each library)  of  each  of  the  two 

programs, for a total of ten programs. Each of these programs will be submitted to the 

following two sets of tests (corresponding to the two hardware configurations):

● Single-node: Runs with processors  P=1, 2, 4 and 8 will be performed on the 

single-node. This will test processor scalability without network overhead.

● Multi-node: Runs with processors  P=1, 4, 8, 16 and 24 will be performed on 

the multi-node cluster. For each run,  N=P/2 nodes will be used, as each node 

contains two processors. This will test scalability with network overhead.

Note that the uniprocessor programs will only be run with P=1, while the threaded 

programs will only be run under the single-node hardware configuration.
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6.2.1 Performance Comparisons

Given the variables that can be adjusted in these experiments, it is important to 

frame and classify the experiments, along their various dimensions such that meaningful 

conclusions can be made.

At the core of these experiments,  we will compare the  performance (work units 

completed per second) of the libraries against each other. To assess the scalability of the 

libraries, we will sample their performance over a range of P, the number of processors 

used.  We can  then  compare  the  normalized  per  processor  performance  (work  units 

completed per second, per processor) over the various libraries. This will be considered 

a  run. Because the performance metrics  are normalized per processor, a run will also 

highlight the overall efficiency of a library: its ability to scale (ideally, linearly) overall 

performance with the number of processors.

For the peer-to-peer job type, multiple runs  will be performed over various job 

sizes. This  highlights the effects job size has over communication characteristics and 

thus overall performance. Finally, comparisons  will be made between the runs on the 

single-node  computer  and  a  multi-node  cluster.  This  gauges  the  effect  that  a  real 

network  has  on  communication  latencies  and  thus  overall  performance.  General 

comparisons  will  be between  the  two  algorithms,  illustrating  the  effects  of 

organizational models on performance.
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6.3 Assessing Usability

Blind,  focus  group-like  testing  methodology  was  considered.  In  such  testing, 

groups of programmers would be subjected to implementing programs in the various 

libraries. The programmers would implement various algorithms using the libraries and 

after, attempt  to  objectively score the usability of all the various libraries in a survey. 

This method has many drawbacks. Cost and time would be a factor in running all the 

developer focus groups. There would be a heavy bias for some programmers, especially 

for libraries they may have seen or used. Documentation and the general availability of 

program samples would also favour some libraries over others. Finally, the inexperience 

of some programmers either with the programming language, the algorithms, or parallel 

program design and implementation may further obscure the results.

Rather, a more objective method (inspired by [83]) was desired and will be used. 

The  experiment  will  take the  programs  written  by  the  author  and  compares them 

objectively, using the methods described below. The author is experienced with all the 

libraries,  the  C++  programming  language  and  parallel  program  decomposition  and 

design. All attempts  will be made to write the best, safest and most  concise programs 

afforded by each respective library.

Each program type group (boss-worker and peer to peer) will have five different 

implementations,  one  for  each library.  The programs  will  be  compared within  their 

group.

Each program will be divided  into the following categories:

131



Chapter 6: Experiments

● Boot strap code: This code is part of the standard infrastructure code to start 

and shutdown the program. This code includes the C++ entry point, any library 

start and stop code, as well as any data file loading and algorithm initialization. 

This  code  is  relatively  constant  (with  respect  to  program  complexity). 

Differences  between  this  type  of  code  among  the  libraries  can  mostly  be 

ignored, as it is usually not a concern for developers, given its trivial nature. 

This type of code will not be included in the analysis.

● Algorithm  code: this  is  algorithm  code  that  does  not  include  any  parallel 

constructs or communication commands. It is specific to the algorithm and is 

common to all versions of the program. For the most part, it is the same for all 

program versions, and any differences will be slight and negligible. This type of 

code will not be included in the analysis.

● Communication code: this is the core communication code that is responsible 

for  packaging  and  exchanging  data  between  processors.  This  code  varies 

significantly between libraries, and as such, will be scrutinized and compared.

For communication code segments, the following objective metrics will be used:

● LOC: Lines  of  code  (LOC)  measures  the  number  of  code  lines  (ignoring 

comments and blank lines) in the program. This will give a rough estimate of the 

size (and usually the complexity) of a segment of code.

● Tokens: The token count measures the number of language tokens in a segment 
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of  code.  Language  tokens  include  variables,  reserved  words,  operators,  and 

string literals. Comments will be ignored. Longer lines of code will be detected 

and penalized by this measure, usually a signal of complex code. This metric is 

preferable to character-lengths of lines as it ignores whitespace and variances in 

identifier  lengths,  which  usually  are  not  considered  contributors  to  code 

complexity.

● Average Tokens per LOC: The average number of tokens per line of code will 

give an idea to the average complexity (in terms of length) of a line of code.

● Dangerous-Operators: “Dangerous”  operators  will  be counted.  Dangerous 

operators are functions or operations that the library makes the developer use, 

but cannot be checked at compile time. Mistakes committed during the use of a 

dangerous operator  result  in  subtle  and difficult  to  debug run time errors  or 

erroneous output.

The following dangerous operators will be counted:

○ Use  of  pointers: any  operation  that  uses  pointers  or  pointer  arithmetic. 

Pointer operations are dangerous as they are subtle in their use, unchecked 

by the compiler and could easily corrupt or crash a running program.

○ Type casting: using  any C++ cast  operator.  C++ strives  for  proper  type 

consistency and safety. Using a cast operator usually means the programmer 

wants (or needs to, because of a library deficiency) to override the system, 

ignoring the checks provided by the compiler.
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○ Type specification: occurs when the user needs to explicitly state the type of 

a parameter. This forces the developer to repeat information, and since this 

information is not checked at compile time, an error could lead to runtime 

errors. This is a particular problem when the actual type and stated type can 

easily  change,  such as  when switching platforms or  if  the  object  type is 

specified in another compilation unit, away from the communication code.

○ Element counting: occurs when the user needs to explicitly state the size of 

structures or elements. This duplication (again, not checked at runtime) is 

error prone and could easily cause buffer overruns.

● Extra  functions: Extra  operators  are  function  calls  that  perform cleanup  or 

other  required  maintenance  functions.  These  types  of  operators  are  pure-

maintenance  (overhead)  code  required  by  the  programmer  –  they  never  add 

functionality to the program or algorithm. The programmer must remember to 

always use them as required, as they are not checked by the compiler. Failure to 

include these operators at best, “leak” or waste resources (such as memory), or 

at worst, cause run-time errors.

6.4 Assessing Application Integration

To analyze how well SAL integrates with a desktop application, a test application 

will  be built,  and several test  scenarios  will be run. The results will be subjectively 

analyzed from a user's point of view.
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The existing boss-worker algorithm code will be built into an interactive graphical 

desktop  application.  This  application  will  be run  on  three  platforms  (Microsoft 

Windows, Apple Mac OS/X, and Ubuntu/Fedora Linux). To emulate possible uses of a 

SAL-enable application, these test applications will be run in three scenarios:

● To  show  how  SAL  provides  no-worse  than  threading  utility,  the  three 

applications will be run independently on their respective platforms, using only 

the processors in their host workstation.

● To show  how the automatic cluster  group  features  could  be  useful  in  small 

deployments, the three applications will pool their processing power and form a 

small group network. This is an example of desktop ad-hoc cluster computing, 

as noted in the SAL design chapter (Figure 11 (c)).

● Finally,  to  show  how  non-technical  users  could  automatically  utilize  the 

resources of a Linux cluster, the Windows client will be connected to a cluster. 

This is an example of desktop workstations as cluster clients, as noted in the 

SAL design chapter (Figure 11 (b)).
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7 Results and Discussion

7.1 Introduction

This  chapter  presents  my experimental results  with  analysis  and  concluding 

discussion.  Appendix  C:  Experiment  Protocol describes the  experiment  process  in 

detail.

7.2 Results: Performance

An objective analysis of the performance of the various libraries is presented here. 

The performance results (per processor, normalized to the uniprocessor implementation) 

was compiled  and presented  as  eight  plots.  Two plots  were  produced for  the  boss-

worker program type (one per single-node and multi-node hardware types). Six plots 

were produced for the peer-to-peer program type (three job sizes  for each of the two 
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hardware types). Each graph plots all the various implementations and their efficiency 

over the number of  cores, showing how the implementations scales with processing 

power availability.. The graphs show the differences between the libraries with respect 

to performance and scalability. Optimal scalability was shown with a value of 1.0 (“as 

good as the non-parallel version, per processor”). Comparing to the efficiency of the 

optimal case provides a sense of the overhead incurred by the libraries.

7.2.1 Boss-worker

Overall,  Figure  12 shows that  all  libraries  have  near  ideal  efficiency over  all 

numbers  of  processors,  P, in  the  single-node  experiment.  In  fact,  due  to  the 

embarrassingly parallel nature of the boss-worker algorithm, most differences between 

implementations can be attributed to timing errors and perhaps contention with other 

processes on the test system. The SAL and threads implementation seemed to show an 

even more level scalability growth, but with PVM attaining near optimal efficiency for 

P=8, a definite difference could not be concluded.

The  glaring  exception  to  this  is  the  MPI  implementation  for P=8,  with  an 

efficiency rate of about 0.88. MPI's aggressive message polling scheme (see  Section 

7.2.3 for in-depth analysis of this feature) is the cause of this inefficiency. The normally 

idle boss thread is turned into a processor-bound thread that competes and takes away 

processing power from the actual worker threads. This leaves nine (eight workers and 

one  boss  process)  to  contend  over  the  eight  processing  cores  in  the  test  machine 
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resulting in suboptimal efficiency. The optimal efficiency of such a setup is 8/9=0.89, 

which is about what the MPI implementation reports at P=8.
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Figure 12: Boss-worker library efficiency on an SMP computer

Overall  and  unsurprisingly,  all  libraries  performed  nearly  optimally for  this 

algorithm across all P.

In the multi-node case (Figure  13), all boss-worker implementations effectively 

have  an  efficiency  near 1.0  for  all  P.  This  is  unsurprising,  as  the  algorithm,  by 

definition,  is  embarrassingly  parallel.  Interestingly,  for  many  cases,  the  MPI 

implementation seems to have super-efficient (greater than 1.0 efficiency). However, 

this difference is so slight, that it may be explained by timing errors.

Due to the embarrassingly parallel  nature of  this  algorithm,  one expected that 
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efficiency  will  be  near  1.0  for  any  value  of  P.  This  makes  this  algorithm a  good 

candidate for volunteer computing other large scale deployments.

1 2 4 8 12 16 20

0.97

0.98

0.99

1

1.01

1.02

Boss-worker Efficiency (Multi-node)

SAL
PVM
MPI

Number of Processors (P)

E
ffi

ci
e

n
cy

 (
U

n
i p

ro
ce

ss
o

r)

Figure 13: Boss-worker library efficiency on a network cluster

In conclusion, we can see that SAL is no worse than any other libraries for an 

embarrassingly  parallel  algorithm  such  as our  sample  boss-work instance.  For  such 

algorithms,  SAL  can be  used  with  confidence  as  it  does  not  provide  undue 

communication overhead.

7.2.2 Peer-to-peer

In the pass-to-peer case (Figure  14), the experiment  ran on a single-node with 

image  size  N=1.  This  is  the  smallest  tested  image  size  and  results  in  the  highest 

communication frequency as it has the lowest per-iteration computation requirements. 

This high frequency tests the libraries the most, bringing their weaknesses to light.
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Figure 14: Peer-to-peer library efficiency on an SMP computer (N=1)

From the plot we can see that the threads and SAL implementations have roughly 

comparable  and  reasonably  scalable  (to  8  processors)  results  for  all  number  of 

processors P. This demonstrates the speed of SAL's  shared memory implementation in 

single-node  configurations.  In  contrast,  PVM's  efficiency  drops  off  significantly 

resulting in poor scalability with increasing P.

MPI, despite being a multi-process/message passing library (with all the assumed 

overheads  that  this  entails)  has  superior  performance  to  the  shared  memory 

implementations (SAL and threads). However, for the last P=8 case, the performance of 

MPI  drops  off  significantly,  due  to  its  aggressive  message  polling  feature  (Section 

7.2.3). This weakness hinders the performance of the MPI implementation for all the 

single-node runs.  This limits  MPI's  ability  to efficiently  use all  the processors on a 
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single-node deployment (which would be one of the simplest and most popular cases of 

parallel  algorithm deployment)  unless  developers and users utilize the proper  work-

arounds.

The next experiment (Figure 15) increases the image (job) size by 10, resulting in 

more (work) processing time per iteration and thus less inter-peer communication. Less 

communication  results  in  less  dependence on the communication  libraries,  reducing 

their effect on overall performance. This is clearly evident in the plot as scalability and 

efficiency for all the libraries are more or less identical.

Finally,  increasing  the  image  size  to  N=100  removes  any  visible  differences 

(Figure 16) between the libraries as the worker peers spend most of their time working 

on the image, rather than doing inter-peer communication.
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Figure 15: Peer-to-peer library efficiency on an SMP computer (N=10)
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Figure 16: Peer-to-peer library efficiency on an SMP computer (N=100)

In the multi-node case (Figure 17), a cluster of machines connected by a network 

is  used to  test  the communication overhead of the various libraries.  The network is 

expected to introduce noticeable overhead compared to the single-node case, making 

the introduced latency and overhead of the communication libraries more important in 

the overall performance of the algorithm.

PVM  and  SAL  have  comparable  degradation  curves,  with  PVM  having  a 

consistent efficiency advantage for mid-range P values.

At  P=8,  MPI  had  a  curious  dip  in  its  efficiency  curve.  This  could  not  be 

conclusively explained, but one possible explanation could be attributed to some kind of 

process deployment inefficiency (Section  7.2.3) for this particular algorithm.  For the 

most  part  though,  MPI has the best  performance especially  at  the highest processor 

counts  (P=16,20).  Optimization-centric  features  in  the  MPI  library  seem  to  have 

positive results on performance.
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Figure 17: Peer-to-peer library efficiency on a network cluster (N=1)

The  overall  work  performance  (work  being  defined  as  W=EP,  where  E is 

efficiency  and P is  the  number  of  processors)  of  all  implementation  peaks  before 

reaching  P=20. That  is,  utilizing additional  processors  after  the peak actually  has a 

detrimental effect on overall performance. MPI has the best overall work performance, 

peaking  at  P=12 with  W=0.64(12)=7.68.  SAL and  PVM  both  peak  at  P=8,  with 

performance  rates  of  0.47(8)=3.76 and  0.73(8)=5.84 respectively.  MPI,  through  its 

aggressive communication latency optimizations, is able to squeeze more absolute work 

performance out of this configuration utilizing more processors in the process.

As  the  image  size  increases,  overall  scalability  of  all  the  implementations 

increases (Figure 18)  resulting in performance peaking at larger P values. PVM seems 

to have the best efficiency for P=4,8, but MPI overtakes it for large P while SAL attains 
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roughly comparable efficiency to PVM for large P.
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Figure 18: Peer-to-peer library efficiency on a network cluster (N=10)

Finally, for large image size N=100 (Figure 19), communication is so infrequent 

(usually  about  10  messages  per  second)  that  the  messaging  overhead  differences 

between the message passing libraries has little effect on overall efficiency. SAL and 

PVM have comparable efficiencies, while MPI, overall, is the most efficient.

For all image sizes of N however,  one expects that the efficiency of the peer-to-

peer algorithm will continue to drop as P increases, until it reaches nearly 0. The ratio 

of communication-to-work increases with  P,  and will  eventually cause the system to 

spend most of its time performing communication operations rather than compute work.
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Figure 19: Peer-to-peer library efficiency on a network cluster (N=100)

In conclusion, for this more communication intensive peer-to-peer algorithm, we 

find that SAL is an adequate solution with respectable performance. For single-node 

cases, SAL is vastly superior to PVM, giving thread-like performance via its shared 

memory architecture. For multi-node, communication-intensive configurations, SAL is 

last  but  trails  closely  behind  PVM  in  overall  performance.  As  the  communication 

sensitivity  reduces  due  to  larger  data  set  sizes  between  communication  events,  the 

differences become less apparent. Except for the full-processor/single-node case where 

it has quirks (attributed to its aggressive message polling), MPI, as expected  (due its 

focus on performance), tends to be the best overall in multi-node configurations.
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7.2.3 MPI Performance Notes

Several  notable  characteristics  of  MPI  surfaced  while  developing  the  MPI 

implementations of  the  algorithms.  There  are  various  features  that  MPI  has 

implemented  to  permit  optimized communication  performance  for  large  algorithm 

deployment with experienced developers. These features all come with trade-offs that 

can actually confuse or hinder the development of smaller, simpler parallel algorithm 

deployments. Some of these aspects may be in all MPI applications or just specific to 

the particular implementation used (LAM 7.1.1 running under Linux).

MPI assumes synchronous communication with fixed buffer sizes. This could lead 

to subtle bugs for developers that are not aware of these implementation details. MPI 

uses internal buffers (or perhaps the buffers of the communication protocols directly) in 

sending messages. When a developer requests to send data that exceeds this buffer, the 

send call  is  blocked (paused)  until  the  receiver  consumes  the  message.  Certain  job 

configurations, for example those that do interleaved communication (common in peer-

to-peer configurations) or for when a node communicates with itself (handy for when 

there is only one worker node and processor) will  become dead locked. These dead 

locks may not manifest themselves until the data sizes exceed the buffer sizes, making 

them harder  to  debug  and  understand.  Developers  must  therefore  understand  these 

limitations when implementing their algorithms. MPI provides specific non-blocking, 

but  more  complex,  data  sending routines  that  can  be  used  to  alleviate  problems in 

certain cases.
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MPI's default  behaviour  prefers to spread out nodes over the cluster, rather than 

clustering them on  individual  SMP machines. This scheme has its benefits and trade 

offs, one of which is increased communication latency for processor bound work loads, 

hindering performance.  MPI offers the end-user many options when configuring the 

size of their MPI cluster and its allocation strategy. The end-user must be aware of these 

options and trade offs when deploying their algorithms. Occasionally, the user may have 

to experiment with various options to find the optimal setup. Although these options are 

powerful and needed to cover all the potential high-performance use-cases of MPI, they 

may be a burden to the casual parallel computing user.

Finally, MPI often does “aggressive message polling.” Rather than wait for the 

operating system to signal and wake up a process that is waiting for a message, the 

process aggressively polls the operating system for the message in a loop. Although this 

decreases  latency  for  processes  that  can  expect  data  in  the  near  future,  it  wastes 

processor cycles that may be usable by other users on a shared system. Furthermore, in 

certain program organization models, such as boss-worker, the boss, by design, spends 

most  of  its  time in  a  message-wait  loop.  Under  this  scheme the  boss  process  now 

unnecessarily consumes a full processing core, which could have been used by workers 

and other users.

7.3 Results: Usability

For  an  objective  assessment  of  programmer  usability,  the  code  counts  of  the 
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sample  program's  communication  code  segments  are presented  and  compared.  The 

uniprocessor counts are listed for completeness. As the uniprocessor by definition does 

no communication, they have no communication code to be counted and thus contain 

all-zero counts.

The tables contain the following headings:

● LOC: lines of code.

● TOK: number of tokens.

● ATL: Average tokens per line of code.

● POP: Number of pointer operations.

● COP: Number of cast operations.

● ETS: Number of explicit type specifications.

● EEC: Number of explicit element counts.

● EFC: Number of extra function calls.

7.3.1 Boss-worker Usability Results and Discussion

Table  1 shows  the  analytical  break  down  of  the  communication  code  in  the 

various boss-worker algorithm implementations. The threaded version of the algorithm 

contained a surprising amount of code. Despite not needing data communication code 

(i.e. code to encode the data objects to the communication layer), a notable amount of 

code was required to setup and synchronize access to the shared variables between the 

threads. The standard POSIX Threading API [21] was used, which required not only the 
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use of pointer operations but also many explicit locking and unlocking functions, as 

shown in the table. Forgetting these extra functions leads to subtle runtime errors or data 

corruption that  are  difficult  to debug. Most C++ programmers would choose to use 

another API (like Scopira Threads (Section  4.1.4), Qt  [14][87] or Boost Threads  [16]

[57]), which use basic C++ features (such as RAII, Section 3.4), that would eliminate all 

the extra functions and pointer uses.

Boss-worker LOC TOK ATL POP COP ETS EEC EFC

Uniprocessor 0 0 0.0 0 0 0 0 0

POSIX Threads 46 284 6.1 17 0 0 0 14

SAL 33 265 8.0 0 0 0 0 0

PVM 50 596 11.9 34 11 0 43 4

MPI 47 968 20.6 57 9 44 44 0

Table 1: Communication code analysis of the boss-worker algorithms

The SAL implementation required the least amount of code (both in terms of lines 

and tokens). This is not surprising as this was one of the design goals of the library. 

RAII was used to deliberately remove all possible error-prone extra functions, while 

type safety and type-deduction was used to further remove tedious coding burdens from 

the programmer.

The SAL library also reuses the Scopira object serialization constructs to perform 

data marshaling. This allows the programmer to implement data serialization once for 

their objects, and reuse the same code in other serializations activities such as file I/O. 

In contrast,  the communication/marshaling code in MPI or PVM is specific to those 
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libraries  and is  unusable  in  other  contexts.  Scopira  numeric  arrays  in  particular  are 

already serializable.  SAL users need not  specify size information when transmitting 

arrays  or  slices,  a  contributing  factor  to  the  zero  EEC operations  for  the  SAL 

implementation.

The PVM implementation required more than twice the number of tokens as the 

SAL version, and 50% more lines of code. However, this is still much less than the MPI 

version. PVM contains a function-per-type communication API, enforcing some type 

safety,  as  noted  by  the  lack  of  ETS operations.  The  API  is  also  packet  based,  and 

although this is not quantified here, makes for an easier to use API than MPI. The non-

RAII based packet API however includes functions that may be easily forgotten,  as 

noted  by  the  EFC.  Luckily,  these  types  of  errors  would  manifest  themselves  quite 

quickly at run-time, unlike the  errors associated with the use of  extra functions in the 

POSIX Threads implementation. The PVM implementation required a few dangerous 

type casting operations to coalesce object data types to PVM data types. However, the 

bulk of these casts (COP) were const-type casts, which was required as the PVM API 

was not  const-correct.  Const-correctness requires that C or C++ functions mark any 

parameters that they do not change (such as in data sending functions) as  const or 

constant. Failure to do so may invoke type-errors  that the programmer must override 

with casts – a tedious and error-prone process.

Finally, the MPI implementation required almost four times the tokens and 50% 

more  code  than  the  SAL implementation.  This  is  by  far  the  worst,  in  terms  of 
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programmer usability. This may be a design decision, choosing to sacrifice usability for 

better programmer control over communication customization and optimization. MPI 

functions calls are not packet based and require that the programmer repeat information 

for each function call, such as data destination and communication group. This is noted 

in  the  large  value  for  ATL,  and  is  evident  with  more  verbose,  cluttered  code. 

Maintenance costs are also increased since the programmer must manually keep all the 

parameters in sync during any changes.

MPI  is  the  only  API  to  use  generic  void pointers  in  their  communication 

functions, requiring the user to specify the type as an option, as denoted by the large 

value  for  ETS.  This  is  particularly  error  prone  when  the  programmer  must  verify 

(usually by consulting various references) that the language types exactly match the 

MPI types.

Both PVM and MPI required pointer operations and element count specifications 

even when sending or receiving single elements.  This contributed to their  POP and 

EEC counts  greatly  and  increases  the  amount  of  tedious  and superfluous code the 

programmer has to write.

In  conclusion,  of  the  three  message  passing  libraries,  SAL provides  by  far, 

according  to  the  metrics,  the  most  usable  and  least  error-prone  API  interface.  In 

contrast,  despite  being  the  de  facto  standard  of  message  passing  interfaces,  MPI 

provides  the  most  verbose  and  tedious  API  by  a  large  factor.  PVM  provides  a 

comfortable  middle  ground  between  SAL  and  MPI.  A  pure  POSIX  threads 
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implementation required a surprising amount of code, perhaps signaling developers to 

choose more usability-friendly threading libraries.

7.3.2 Peer-to-peer Usability Results and Discussion

Table  2 shows the  analytical  break  down of  the  communication  code  for the 

various peer-to-peer algorithm implementations. For the most part, all the discussions 

and conclusions of Section 7.3.1 apply, and will not be repeated here. There are some 

noteworthy differences between the boss-worker results and those of peer-to-peer.

Peer-to-peer LOC TOK ATL POP COP ETS EEC EFC

Uniprocessor 0 0 0.0 0 0 0 0 0

POSIX Threads 40 270 6.8 27 1 0 0 15

SAL 35 530 15.1 0 0 0 0 0

PVM 47 691 14.7 13 0 0 19 14

MPI 33 702 21.3 31 0 17 17 2

Table 2: Communication code analysis of the peer-to-peer algorithms

The peer-to-peer algorithms perform some complex merging of peer data between 

communication calls.  This code is  common to all  message passing implementations 

(SAL, PVM, and MPI).  The complexity of this code is about 100 tokens, and is the 

most significant premium (in terms of tokens) that all the message passing libraries pay 

over  the  pure  threads  implementation.  Despite  this  cost,   SAL  still  has  a  notable 

advantage over PVM and MPI in terms of token counts. For algorithms that work on a 

single,  shared data  object such as this,  the shared memory architecture of a threads 
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implementation is quite advantageous in terms of complexity reduction.

PVM, in this case, required higher LOC and EFC values than either SAL or MPI. 

PVM requires certain extra maintenance functions to be called per message block. The 

peer-to-peer algorithm required many different types of messages to be sent (compared 

to the boss-worker algorithm), resulting in PVM accruing more extra function calls and 

lines of code counts.

Finally, one issue from Section 7.2.3 regarding MPI performance issues also has 

an impact on usability that only subtly shows up in these metrics. The MPI assumption 

of synchronous communication with fixed buffer sizes forces the programmer to use 

alternate, non-blocking send calls for MPI in the peer-to-peer communication code. This 

code required two additional clean-up functions that manifested themselves as two extra 

calls (EFC) in the results table. When using MPI, developers must  be mindful of its  

performance optimizations when developing their algorithms.

Drawing similar conclusions as in Section  7.3.1, we see that SAL is superior to 

MPI and PVM in terms of tokens and dangerous operations. With respect to LOC, SAL 

is  comparable  to  MPI,  but  only  because  MPI's  lack  of  packet  based  grouping  of 

communication functions sacrifices token counts for lines of code counts. Surprisingly, 

the pure threading implementation also had a comparable LOC values, but with fewer 

tokens.  A more  usability-friendly  thread-based API  (such  as  those  listed  in  Section 

2.3.2)  would help to reduce the lines of code and dangerous operator counts to more 

reasonable levels.
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7.4 Results: Application Integration

The results of the application integration scenarios will be presented here.

7.4.1 Application Design

The test application for assessing application integration issues uses the core boss-

worker algorithm code, SAL for message passing and the Qt  [14][87] library for the 

user interface. All libraries are well tested on the three test platforms, including both 32-

bit and 64-bit configurations.

The  worker  code  snippets  are  similar  to  that  of  the  non-GUI  boss-worker 

algorithm. That is, they receive work (via SAL), perform it (using the core algorithm 

code) and return the results to the boss (via SAL).

The boss code is quite different, as it is now integrated into the GUI. There is no 

separate boss thread: the GUI thread, in addition to responding to the usual GUI events 

periodically (via a Qt time object) checks the boss SAL message queues and processes 

the  corresponding message  events as needed. Unlike MPI, SAL is message based and 

will queue events asynchronously permitting such a configuration. This configuration is 

sufficient, as the worker's algorithm performance is not dependent on the latency of the 

boss's reply.

In algorithms where the boss process latency is integral to the performance of the 

system, the GUI thread would spawn the boss process separately, giving the algorithm 

boss its own dedicated thread. This is a required trade-off in avoiding any performance 
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penalties.

The GUI/boss code itself (by design) was relatively straightforward to implement 

and understand. Perhaps counter-intuitively, the application's GUI/boss code is actually 

simpler than  the  basic thread code, as SAL forces  programmers to compartmentalize 

their  communication  code  in  explicit  message  passing  blocks.  A  thread-like 

implementation, although potentially faster, involves shared areas locked by mutexes 

that are more prone to developer error and race conditions.

Furthermore,  development  of  the  desktop  application  uses  the  local,  threaded 

implementation of the SAL message passing engine. This greatly simplified debugging, 

as it was restricted to one process. In other message passing libraries, one may need to 

debug multiple processes simultaneously, perhaps on separate hosts, greatly increasing 

development time.

The  application  contains  a  Cluster  Status tab  to  enumerate  all  the  agents 

(machines) of the current SAL cluster and their  processor counts. This information is 

strictly for illustrative purposes and is not required for the operation of the application. 

SAL-enabled desktop applications do not need to present this information to the users.

7.4.2 Application Use Cases

In the first use case, the three applications (one per platform: Windows, Mac and 

Linux) ran independently. This scenarios represents the lone desktop user, who may not 

have,  want,  or  need the computation resources  of  other  hosts.  This  includes  mobile 
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laptop users who are disconnected from their host network.

Figure 20 shows the three applications running on the platforms. The application 

is a typical GUI application with menus and interactive output. The user needs only to 

start the application via an icon and click through the various functions and options. The 

algorithm, via SAL, automatically uses all the processors and cores in each workstation, 

without any user configuration or input.

Performance  between  the  three  applications  of  course  varies  greatly,  as  the 

machines  themselves  vary  in  processor  power  and  other  factors.  In  particular,  the 

Windows workstation is the most powerful with eight  processor cores (performing 95 

iterations/sec), followed by the Mac with two cores (30 iterations/sec) and Linux with 

only  one  core  (and  only  8  iterations/sec).  The  performance  per  core,  of  course,  is 

dependent on the CPU type itself  and the optimization capabilities of the respective

C++ compiler.

In the second use case, the three applications (one per platform: Windows, Mac 

and Linux) were run as a group. This scenario represents a user or group of users with 

moderate computation requirements. They can simply pool their desktop processors into 

one computation group. This may be popular for groups without the resources (human 

or financial) to support a dedicated compute cluster. Older, idle workstations may be 

quickly (without having to change the configuration of the existing operating system) 

re-purposed to contribute resources to the group. Traveling laptop users may also form 

such groups amongst themselves in an ad-hoc fashion via a wireless network.
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Figure 20: Application integration demonstration for individual runs

The cluster groups are formed in an automatic manner, using network discovery. 

When the second and third instances launch, they automatically discover (and form a 

group with) the first application instance. The user does not need to start or stop any 

ancillary programs, use the command line or understand anything about networks.

Once  an application  instance  joins  the  network,  it  will  be  able  to  use all  the 

processors  in  the  group to  perform its  tasks.  As  shown in  Figure  21,  we see  each 

instance utilizes all 11 processors in the group and all have about the same performance: 
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130  iterations/sec.  Due to  SAL's  multi-platform  support,  the  weaker  machines 

workstations (Linux and Mac in this case) are able to use the many processors of the 

Windows machine, drastically increasing their performance. This adds to the scientific 

utility  and extends the life  of older  hardware by letting them reuse the resource of 

newer, more modern workstations.

Figure 21: Application integration demonstration for group runs
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Finally, in the last case the Windows desktop application is shown (in Figure 22) 

using the  resource  of  a dedicated  computational  Linux  cluster.  In  this  scenario,  a 

desktop Windows user is able to automatically use the resources of a locally managed 

Linux cluster greatly increasing the performance (to a total of 436 iterations/sec) of their 

algorithm.

Figure 22: Application integration demonstration for cluster runs

The user needs only  to  start  their  application in the usual manner  (usually by 

clicking an icon). The user does not need to be aware of the Linux cluster at all. This 

frees the user from having to learn to login, operate and transfer data to and from a 

system they may not be familiar with.
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The automatic discovery mechanism of SAL currently only works with machines 

that are on the same IP subnet. If the cluster is on another subnet (as was the case here), 

the user's SAL-enabled application must be given the cluster's host URL (link) string. 

This  link string looks like a  web address  (although rather  than  http,  it  specifies a 

scopira protocol). The application can be easily given this link, either as a command 

line  parameter  (which  could  be  embedded in  a  desktop  shortcut  icon)  or  via  a 

configuration screen in the application itself.

A  SAL  application,  upon  failure  to  connect  to  any  peers  of  clusters,  will 

automatically  run  in  a  local  mode  that  uses all  the  processors/cores on  the  user's 

desktop. This means that even if the cluster is unavailable (due to hardware or network 

issues) the application is still usable without the need for additional user configuration. 

This is particularly handy for mobile laptop users who may be away from their host 

cluster, yet still want to be able to use their software.

The SAL processes on the cluster must still be managed by someone. This does 

not have to be the developer or otherwise technical user and can be another user or the 

system administrator. By design, SAL applications  may be easily grouped into cluster 

groups by any user. The cluster also does not have to be Linux based, any type can be 

assembled by grouping together a variety of workstations as a computation cluster when 

using SAL-enabled applications.
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7.4.3 Application Conclusions

This  real-world  application,  through  use  cases,  presented  some  of  the  more 

subjective benefits of the Scopira Agents Library. These benefits include:

Embeddability into an existing application as a library. The complete SAL system 

can be embedded in the host application as a  library requiring no external  setup or 

management programs (unlike PVM and MPI, which require management programs). 

The user does not need to login to unfamiliar systems, or use unfamiliar software, but 

instead may run standard desktop applications.

No manual setup for desktop parallelism. The embedded library, when it does not 

find any peers or clusters, will immediately use its built in, always available, single-host 

threaded engine. This engine is always available to the user and developer, giving the 

application multi-processor scalability (using locally available processor cores) without 

any setup.  This is  useful for users who do not  have cluster resources available,  are 

mobile (with a laptop, for example),  or have work loads that do not require cluster 

computing.

Transparent  cluster  parallelism. The  detection  and  discovery  of  other  SAL 

processor providers is transparent to the end user. A system administrator, the user, or 

other users may launch worker SAL processors that automatically provide computation 

resources. Clients need not specifically enter the location of these providers, their SAL 

library will automatically discover them through standard local area network broadcast 

techniques. Should no resources be found, the internal threaded implementation will be 
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used to provide single-host multi-processor/core parallelism.

Multi-platform and ad-hoc computing. Although all parallel libraries are available 

on  a  multitude  of  platforms,  the  embeddability  of  the  SAL approach provides  new 

options for casual and ad-hoc cluster computing. Users may launch multiple instances 

of  their  applications  on  any  major  operating  system,  and  through  the  transparent 

discovery mechanism, they will  group together and share resources.  Users need not 

dedicate hardware, consult system administrators or use unfamiliar operating systems to 

utilize  cluster  computing.  This  is  useful  for  smaller  or  mobile  groups of  users  that 

require less formal network and hardware configurations.

7.5 Other Applications

We used SAL for a number of  projects, some of which I now describe.

A full  version of stochastic feature selection (SFS)  [80] was developed to use 

Scopira and the SAL. SFS is an iterative feature dimensionality reduction technique for 

the classification of complex voluminous biomedical data. SFS randomly assigns the 

original  dataset  samples  (e.g.  magnetic  resonance  spectra)  into design and test  sets. 

Once  the  design  phase  is  complete  (i.e.,  classification  coefficients  have  been 

determined), the test set is used to externally validate the classification performance. 

The stochastic nature of SFS is controlled by a feature frequency histogram (Figure 23) 

whereby the  performance of  each classification  iteration  is  assessed  using  a  fitness 

function. An ad hoc cumulative distribution function, constructed from this histogram, 
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is iteratively used to randomly sample new features (rather than each feature having an 

equal likelihood of being selected for a new classification iteration, only those features 

used  in  previous  “successful”  iterations  are  selected).  Via  SAL,  SFS  bundles 

classification iterations to minimize inter-process communication and maximize CPU 

loads.  Furthermore,  while  SFS  exploits  parallelism,  it  remains  (optionally)  strictly 

deterministic, that is, results are perfectly reproducible regardless of computational load 

(an extremely useful benefit for biomedical research).

Figure 23: Feature frequency histogram used by SFS

The SFS algorithm uses  an  extensive  combinatorial  search  operation  and was 

originally implemented using MPI (specifically,  the LAM/MPI implementation).  The 
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MPI version has been well tested and extensively used. Although functional, the MPI 

version was comparatively cumbersome to use, requiring knowledge of logging into the 

Linux cluster and slave node startup. Command line usage with graphical monitoring 

was clumsy at best requiring a Linux workstation. These usability shortcomings made it 

an interesting candidate for converting to SAL.

SFS was subsequently ported to SAL in a relatively straightforward manner. As 

the algorithm had already been designed in a parallel fashion, porting simply required 

that all the communication/data transport code segments (the segments that utilize MPI) 

be converted to use SAL message packets. The application itself was restructured as a 

task object as SAL deals with objects rather than whole processes. The new version 

maintained the same performance characteristics as the MPI version but now sported an 

easier to use interface (available from the user's Windows desktop as a native Windows 

application) with seamless access to the compute cluster (forgoing the necessities of 

logging into Linux). As an added bonus, the application is also able to run without a 

cluster, albeit limited to the resources available at the user's desktop. This allows the 

application to be run when the cluster is unavailable, either temporarily due to system 

issues or due to temporary unavailability (such as when the user is mobile via a laptop 

computer) or when the cluster's resources are simply not needed.

Another application, Raygun, has been developed from the ground-up as a Scopira 

application,  subsequently  using  SAL.  This  application  was  initially  developed  to 

provide extensive 3D visualization capabilities to data sets produced by a third party 
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application. This application uses a Monte Carlo based simulation to simulate light rays 

traveling  through  a  variety  of  user  defined  mediums  and  finally  terminating at  a 

detector.  The  visualization  component  allows  the  researcher  to  examine  large 

collections of these rays,  with real time 3D capabilities and speedy analysis tools – 

much faster and more powerful than the previous MATLAB-built tools.

Along with the visualization component, it was quickly realized that replacing the 

propriety ray generation software would be beneficial.  Not only was the cost of the 

software rather high and its algorithm implementation details unknown, the software 

was  tied  to  a  Windows  machine  and  required  long,  often  multi-day  run  times  to 

complete jobs. Being restricted to a single Windows machine reduced remote access and 

left it vulnerable to the general instabilities of the host OS. More importantly, however, 

was the lack of cluster support within the application, requiring one machine to spend 

multiple days on a problem, ignoring the vast compute resources of any available local 

Linux  cluster.  It  was  then  decided  to  implement  our  own  Monte  Carlo  based  ray 

generation algorithm within the Raygun application, utilizing SAL for parallelization.

The core algorithm itself was written as a single concrete C++ object. Interfaces 

(or “views”) were then added to Raygun. The first version simply ran the algorithm 

without SAL and therefore used one processor. The second version utilized SAL (and 

therefore, all the processors in the available  cluster). The version was implemented as 

three types of SAL tasks, a worker task, a master task and the monitoring task within the 

GUI. The workers run the Monte Carlo simulation algorithm itself, reporting successful 
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rays back to the master task. The master task tracks and coordinates the worker tasks, 

but does no work itself. It reports rays and general performance metrics back to the 

monitor task, which then displays them to the user in real time.

The Raygun application provides a  good use-case of a complete SAL solution. 

The application provides  a full  suite  of cluster-aware data  simulation and modeling 

capabilities,  combined  with  high-performance  visualization  capabilities.  The 

investigator gets all of this within a single desktop application  environment  native to 

their  familiar operating system, blissfully unaware of the details of cluster computing 

and management.

In all  cases,  the algorithms chosen for implementation in SAL were relatively 

friendly to parallelization. That is, they were not communication bandwidth intensive or 

sensitive  to  network  delays  and  latencies.  This  was  deliberate  as  our  network 

infrastructure can be considered to be of a typical nature of mostly “fast” (“gigabit”) 

Ethernet. Such algorithms' total performance are not significantly affected by the speed 

of the transport layer. This is particularly important as the SAL transport layer is slower 

than most stock MPI implementations, by design, and much slower than any hardware-

tuned MPI implementations. Communication intensive algorithms are simply out of the 

scope  of  the  SAL  framework  and  typically  better  left  to  the  specifically-tuned 

frameworks and hardware.
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8 Conclusions

Although SAL is still in development, it is already proving to be a useful library 

for  cluster  computing.  The  SAL  transport  layer  has  yet  to  undergo  aggressive 

optimization and, as a result, is  slower than a tuned MPI (or similar) implementation, 

especially  if  the  competing  implementation  is  tuned  for  a  particular  OS  or 

communication  network infrastructure.  However,  speed was not  the primary goal  of 

SAL.  Nevertheless,  for  a  large  collection  of  low-communication  applications,  SAL 

provides more than acceptable performance. This was verified in our own algorithms, as 

the SAL implementations of our low-communication applications are linearly scalable 

as a function of the number of processors used. For medium-to-high communication 

applications, scalability was only slightly worse than PVM.

In the area of developer usage, SAL may be considered to be a general success. 
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For  non-Scopira  developers,  the  API  provides  yet  another  message passing  API, 

requiring parallel programmers to still decompose their applications. The C++ features 

provide a more object-oriented approach to a universal task system than that of PVM, 

while  the  embedded  non-cluster  implementation  offers  easier  debugging  and 

development.  Further, for existing Scopira developers,  the library provides a natural 

API that is a seamless addition to the Scopira library.

Finally, the users get a significant benefit. Their desktop applications are able to 

use behind-the-scenes cluster resources yet still function and behave like their native 

desktop applications. They need not learn the technical details of cluster access and 

application usage. This lowers the entry barrier to cluster computing allowing all users 

within a site to utilize cluster resources, expanding their computational capabilities.

Future research and work includes further developing and deploying more SAL-

based applications.  This  will  allow more  testing  of  both  the  implementation  of  the 

various SAL engines, as well as test the completeness of the SAL messaging API. The 

services concept will  further need to be explored and defined, with several services 

(initially,  the  task  monitor  and job  monitor  services)  slated  for  development.  More 

demanding applications  will  be developed to  fully  test  the  task  allocation and fault 

tolerance capabilities of the SAL system. Various advanced and specific load balancing 

algorithms will  also be explored.  Currently applications  only touch on stressing the 

basic scheduler. Finally, more general debugging and network monitoring software will 

be made to inspect the status and configuration of an active SAL network, helping in 
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SAL development and providing visual feedback to developers and administrators.

8.1 Answers to Research Questions

This section will outline some of the results framed as answers to the research 

questions posed in section 1.4, Research Questions.

This work has shown that through a variety of programming language features 

and  implementations  design  choices,  parallel  application  development  can  be 

simplified,  permitting  the  construction  of  more  user-friendly  parallel  processing  

applications:

This solution is  easier and less error prone through the use of a variety of C++ 

programming language features that permit for a more concise library API, that requires 

less developer code with more compile-time error checking.  I assessed this usability  

objectively through a variety of source code metrics that offer a representation of code 

complexity. We can then compare these metrics directly, giving a sense of usability and 

general programming aids.

With regards to performance, I used straightforward performance measurements, 

and  compare  the  proposed  solution  to  that  of  existing,  established  libraries,  using  

various algorithm types and work loads.  Acceptable levels of performance are difficult 

to determine, as relative performance varies with  algorithm type and work load. But for 

almost all the tested configurations, the solution shows acceptable (compared to existing 

solutions)  performance results.  This  shows that  there are some algorithm types  and  
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work loads for which this solution's performance is acceptable.

The solution implements all the characteristics of a fully embeddable library. It is 

a self-contained library, utilizes in-process threads and is multi-platform. Supporting the 

three  major  desktop  operating  systems  was  deemed  a  requirement,  as  this  solution 

targets  desktop  and  commodity  hardware.  External  and  cumbersome  infrastructure 

software was minimized by containing all the needed management functionality in the  

library itself.  Basic network broadcasting functions and a  straightforward URI-based 

connection  specification system  were implemented  to  infer  network  configuration  

options for the user.

8.2 Contributions

The main contribution of this work is the design, development, implementation 

and assessment of a new parallel programming library,  SAL, that provides adequate 

performance (efficiency) for a range of parallel programming problems.

The novelty of this parallel programming library is that it is more developer- and 

user-friendly  than  other  existing  libraries.  This  novelty  has  two  major  facets:  (i) 

programmer-usability and productivity and (ii) application integration. Together, they 

permit a wider range of programmers to use parallel programming in a wider range of 

new and existing applications.  This  goal,  user-friendliness,  is  unique among current 

parallel programming libraries.

The result of the novelty is that parallel programming can be embedded into more 
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applications, especially desktop applications. The user base and use cases for parallel 

applications can be increased, resulting in more efficient use of resources in a variety of 

applications. With increased efficiency, work can be performed in less time and larger 

problems can be tackled.

8.3 Limitations and shortcomings

SAL's  advantages  are  of  course  not  without  their  trade-offs.  By  design  and 

implementation, SAL may be less efficient and less scalable than other libraries. For its 

target  audience,  these  sacrifices  are  acceptable;  however,  other  options  may  be 

preferable to other users. For example, SAL is not designed for grid computing and 

communication intensive algorithms. SAL also does not, in its current implementation, 

utilize specialized communication hardware or protocols.

SAL's object-oriented design, error checking and buffering  causes SAL to  have 

higher CPU and memory overhead than other optimized libraries, resulting in lower 

communication throughput and higher latency.

8.4 Future Work

SAL is  a  complete,  fully  tested  and  usable  message  passing  library  that  is 

immediately available. However, even though its original mandate has been fulfilled, 

there  are still  many areas  of  possible  expansion and feature  improvement,  some of 

which I will now discuss.
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8.4.1 Performance Optimizations

The current SAL network engine strived for correctness and ease of source code 

maintainability,  while  sacrificing  performance.  Future  work includes optimizing  this 

engine  for  better  network  performance,  through  various  API  and  implementation 

enhancements.  For  example,  a  UDP-based  transport  layer  could  be  considered, 

sacrificing the guaranteed reliability of TCP for the speed of UDP. This sacrifice may be 

acceptable  in  error-free  networks  such  as  those  in  controlled  compute  cluster 

environments. Interfacing with specialized, high-performance communication hardware 

such as Infiniband [51] could be considered.

8.4.2 Load balancing and task migration

Network wide load-balancing can be added by allowing long running tasks to be 

migrated,  mid-run, to  less loaded hosts.  This would permit  on the fly  per-host load 

adjustments, a necessity when machine loads change. Programmers would follow an 

object-oriented style in utilizing this feature: they would permit their task objects to be 

serializable (that is, its state reduced to a byte stream) by implementing load and save 

methods in  their  task objects.  This  same concept  is  used  to  permit  compound data 

structures to be sent over the network. SAL would not use any specialized (and thus 

hardware  or  at  least  platform specific)  stack-saving  functions  –  the  save methods 

would only be called between run method calls.

This  same  serialization  concept  could  be  used  to  do  check-pointing  for  fault 
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tolerance. The state of a running task would be periodically saved to disk (or another 

host).  If  the  task  should  subsequently  fault  –  disconnect  or  crash  due  to  software, 

hardware or network issues – the master will restart the task from its last recorded state 

on a new agent,  giving the task another chance to finish its  work.  Agents could be 

configured to only run one user task per process, permitting operating system enforced 

security and protection between tasks.

Some of these functions could be implemented now, either in user code or as a 

service task.  This would permit  experimentation without having to make potentially 

tricky engine code adjustments.

8.4.3 Decentralized Networking

The master-agent architecture of the current network engine implementation could 

be expanded to be more scalable with secondary master agents, or backup agents. This 

would permit better fault tolerance for when the master agent's host is lost and permit 

the use of larger networks as it distributes the routing and task management bottlenecks.

Eventually,  this  concept  can  be  taken  to  its  natural  conclusion  in  the  form a 

decentralized  engine implementation.  Unlike  the  current  network  implementation, 

which  has  a  master  agent,  the  decentralized  version  would  not  have  any  designed 

masters and be purely peer-to-peer. This would be a significant challenge, as it requires 

much  more  complexity  with  respect  to  task  management,  message  routing  and 

scalability. The resulting system however would have grid-computing like scalability 
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and fault tolerance.

8.4.4 Algorithm Exceptions

SAL permits  the  development  of  fault  tolerant  algorithm implementations.  An 

implementation is fault tolerant if it can continue processing (or at the very least, fail  

gracefully) after the loss of a processing peer.

SAL provides, with its API, the functionality needed to explicitly monitor peers. 

However, for algorithm implementations that simply want to fail gracefully (rather than 

attempt to recover and continue processing), the SAL API could be more automatic and 

helpful.

Using C++ exceptions, the SAL API could trigger termination of the user's task 

code when it detects a error.  Errors could be defined as attempting to communicate 

(either  by  sending  or  waiting  for  data)  with  an abruptly  terminated  peer  node 

(terminated either because of algorithm bugs or because of system faults). The  error 

condition  would eventually  be discovered by all the member tasks in the  task group, 

effectively (and safely) terminating the  group. The initiator of the  task group (usually 

the user via a GUI) could then choose to rerun the algorithm with a new task group. 

However,  the  exception  mechanism  must  be  used  judiciously  to  avoid  unintended 

consequences in algorithm implementation design. Many use cases and scenarios would 

have to be considered and tested.
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8.4.5 Additional Message Interfaces

For applications that would like to use the transport services and communications 

system but  not  necessarily  the  SAL messaging API,  SAL provides  various  wrapper 

APIs. These interfaces are not part of the core body of research but are available in an 

experimental fashion for possible future work. They were used to test the scheduling 

engines with existing MPI user programs. Future work could look into extending these 

APIs,  in  the hopes  of  further  widening the use of SAL. However,  using alternative 

messaging APIs does eliminate one of the main benefits of SAL: providing an easier to 

use messaging API.

A minimal MPI interface is provided that bridges MPI-enabled applications to the 

agents transport layer. It does this by mapping the basic MPI communicator concept to 

an  agent  group  and  encapsulating  every  MPI  message  in  a  SAL message  packet. 

Although this API and implementation combination would be slower than a plain MPI 

implementation (and much slower when compared to an implementation optimized for 

particular communication hardware), it is still quite useful. For applications that are not 

bandwidth or latency sensitive, the difference in performance would be negligible with 

respect to total run times. Furthermore, this bridge-API allows the application code to 

be reused and utilize a SAL network. This serves as a way to test and benchmark the 

SAL implementation against a reference MPI implementation. Finally, programs using 

this MPI API can be made to communicate with standard agent algorithms and services 

in a straightforward manner.
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SAL also includes a small API for MATLAB applications. This API permits data 

passing  between  running  MATLAB and SAL-enabled  applications  using  the  agents 

network  transport.  Although basic,  this  API does  allow developers  to  build  parallel 

applications with MATLAB without requiring the  Cluster Toolkit (from MathWorks, 

Inc.), a native toolkit that provides cluster computing facilities for MATLAB. Finally, 

these MATLAB processes,  by virtue of the agents network,  may communicate with

C++-built applications and thereby offload processor-intensive computations.

Scopira  also  provides  a  PVM layer  that  helps  Scopira  applications  utilize  the 

PVM API.  This  library  is  currently  being  used to  quickly  compare  PVM and SAL 

applications with respect to performance and may eventually form the basis for a PVM 

layer over SAL. Other relationships between PVM and SAL may also be explored, such 

as allowing the PVM server daemons to launch SAL agents, similar to the use of using 

PVM to bridge disjoint MPI instances [34].
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Appendix A: Algorithm Pseudo-Code

This appendix contains an overview of the algorithms used in the test programs. 

This is only a brief overview (pseudo-code), for a detailed list, the source code should 

be consulted.

Boss-worker

The  boss-worker  algorithm  is  a  rudimentary  version  of  Stochastic  Feature 

Selection  (SFS)  [80],  a  feature-reduction  strategy  that  aids  in  the  classification  of 

biomedical data sets. The input to such an algorithm is a dataset of patterns, where each 

pattern has a set of features and a class label. The goal of a feature reduction algorithm 

is  to  find  only  the  discriminating  features  of  the  dataset  that  help  a  classification 

algorithm predict the class labels. This is vital for many types of datasets that contain a 
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large  ratio  of  features  to  patterns,  which  can  cause  problems  for  classification 

algorithms. The pseudo-code of the algorithm is:

• As input,  take  in  a  matrix  (two dimensional  array)  of  features  (where  each 

column is  a  feature and each row is  a  pattern)  and a  vector  of  class  labels. 

Choose some subset of the patterns to be the training set, leaving the others to 

be the test set.

• While the done criteria has not been met:

◦ Choose a random subset of the features, following certain selection rules (for 

example, some selected regions may be combinations of subregions in the 

original dataset).

◦ Train a classifier on the training patterns and this selected subset of features, 

and then test the classifier on the testing patterns. This implementation uses 

Linear Discriminant Analysis (LDA) [95], but other classifiers can be easily 

(and in the full version of SFS are) used.

◦ If the percentage of correct classifications is better than the best result thus 

far, then note this percentage (and its regions) as the current best.

◦ Stop the loop after some threshold has been met, for example, an iteration 

limit, time limit, or classification accuracy.

• Finally, report the run time, iteration count and the best feature subset with its 

accuracy percentage.
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Peer-to-peer

This peer-to-peer algorithm is an implementation of Conway's Game of Life, a 

classic, deterministic cellular automaton played out on a two-dimensional matrix. Each 

element (cell) in the matrix has one of two states, alive or dead. Subsequent states of a 

cell depend on the previous state and its immediate eight-connected neighbors' states. 

The algorithm is completely deterministic except for the initial random generation of 

the cell matrix. The pseudo-code of the algorithm is:

• Randomly create the first two-dimensional integer matrix of logical values (0 for 

dead, 1 for alive). This becomes the first current matrix..

• While the done criteria has not been met:

◦ Prepare the next matrix by applying the following deterministic rules to each 

new cell:

▪ A dead cell becomes alive if it has exactly three alive neighbors.

▪ An  alive cell  continues  to  live  if,  and  only  if,  it  has  two  or  three 

neighbors.

◦ This new matrix becomes the  current matrix for the next iteration of the 

algorithm.

◦ Stop the loop after some threshold has been met, such an iteration limit, time 

limit, or if the system has reached a stable or cyclic state.

• Finally, report the run time, iteration count and the final state matrix.
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Appendix B: Electronic Files

The source code to Scopira and the Scopira Agents Library (SAL) as well as all 

the  experiment  programs  used  in  this  work  are  available  on-line,  at  the  following 

location:

http://www.cs.umanitoba.ca/~ademko/thesis/

To compile the applications on any platform, a developer needs (in addition to a 

C++ compiler) the following additional, readily available software packages:

● CMake for setting up the project or make files.

● PVM libraries (optional) for building the PVM test programs.

● A MPI library (optional) for building the MPI test programs.

● The Qt (optional) cross-platform application and UI framework is required for 

building the desktop application test program.
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Appendix C: Experiment Protocol

This appendix will describe, in detail, how the experiments were conducted.

Performance Experiments

Exact performance results are specific to the hardware used in the experiments. 

The experiments in this work were carried out using the following hardware:

● Single-node:  A Dell  PowerEdge 1950 computer,  with  two 4-core Intel  Xeon 

E5410 processors (running at 2.33 GHz), running Ubuntu Linux 8.10.

● Multi-node:  A set  of  10  IBM  EServe  326  computers,  each  with  two  AMD 

Opteron 250 processors (running at 2.4 GHz), running Fedora Core 3 Linux, 

connected via a giga-bit network.
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The  boss-worker  algorithm  implementations  are  represented  by  the  five 

executables:  sfs_uni,  sfs_thr,  sfs_age,  sfs_pvm and  sfs_mpi.  They  are  all 

command line programs that accept at variety of parameters that affect their runs. Upon 

completion, all the programs emit a one-line report that summarizes their performance 

in terms of algorithm iterations/second and iterations/second/processor.

All boss-work runs were run for 1,000 seconds (parameter  T=1000), using the 

default dataset and parameters.

For the single-node runs, the four implementations (sfs_thr, sfs_age, sfs_pvm 

and sfs_mpi) were run using a varying number of processors (parameter P=1,2,4,6,8) 

and compared to the uniprocessor run (sfs_uni) for efficiency.

For multi-node runs, three implementations were tested (sfs_age, sfs_pvm and 

sfs_mpi) with a range of processors (parameter P=1,2,4,8,12,16,20).

The  peer-to-peer  algorithm  implementations  are  represented  by  the  five 

executables: conway_uni, conway_thr, conway_age, conway_pvm and conway_mpi. 

They are all command line programs that accept a variety of parameters that affect their 

runs. Upon completion, all the programs emit a one-line report that summarizes their 

performance in terms of algorithm iterations/second and iterations/second/processor.

All  peer-to-peer  runs  were  run  for  500  seconds  (parameter  T=500)  using  the 

default initialization seed.

The single-node and multi-node runs were executed in the same manner as that of 

the boss-worker algorithm.
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For the peer-to-peer algorithm, the job or image size must be specified with the 

parameter  N. This parameter represents the image size, in cells (the actual width and 

height  of  the  image  are  the  square  roots,  approximately,  of  N).  We used  was 

N=1,000,000,  N=10,000,000 and  N=100,000,000.  The  numbers  were  abbreviated  to 

N=1, N=10 and N=100 in the final reports.

The experiment results presented in Chapter 7 were the best efficiency values for 

multiple  runs  using  all  combinations  of  algorithms,  libraries,  and  P.  For  a  specific 

combination,  X,  of  algorithm,  library,  and  P,  five  runs  were  performed.  Since each 

algorithm is deterministic in nature, it is expected that, apart from external factors such 

as extreme system loads, the efficiency values should be similar. If a run was unduly 

influenced by an external factor, it was ignored and X was run again. Since the standard 

deviations  were  small  across  all  combinations,  and  in  the  interest  of  clarity  of 

presentation,  we  decided  not  to  include  the  error  bars  in  the  plots.  Moreover,  we 

extrapolated experiment results to larger P (e.g., P=64). The expositions relating to P=8 

were not further elucidated with larger P. Therefore, in order to avoid redundancy, we 

decided not to include these results in Chapter 7.

Usability Experiments

For the objective code usability analysis, the source code was manually counted 

and itemized. A manual method was chosen for its simplicity and its feasibility, as the 

number of code lines was manageable.
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For each relevant  (that is,  code involved in communication)  code line,  a C++ 

comment was embedded with the token count and (if any) dangerous operator counts. 

These special count comments remain in the source code for reference.

The  simple  utility  program  code_snip_all and  code_snip inspect  all  the 

source code for these special count comments to produce an itemized report. The tables 

in the results chapter present the contents of this report verbatim.

Application Integration Experiments

The application integration demonstration was run on average hardware:

● A Dell workstation running Microsoft Windows 7,

● An Apple Mac Mini running OS X 10.6,

● A Dell workstation running Ubuntu Linux 9.10.
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