
THE UTILITY OF GRAPH THEORETIC SOFTWARE METRICS: A CASE STUDY

Aleksander B. Demko, Nicolino J. Pizzi
Institute for Biodiagnostics, National Research Council

435 Ellice Avenue, Winnipeg MB, R3B 1Y6
pizzi@nrc.ca

ABSTRACT

The adoption of and adherence to object-oriented de-
sign and programming principles have allowed the soft-
ware industry to create applications of ever-increasing
complexity. A concomitant need arises for strategies
to identify, manage, and, wherever possible, reduce this
software complexity. One such strategy is the systematic
collection, interpretation, and analysis of software met-
rics, mappings from software objects or constructs to sets
of numerical features that quantify relevant software at-
tributes.

We describe a novel approach that employs various
graph theoretic algorithms to analyze the higher level,
application-wide class relationship graphs that emerge
from object-oriented software. In addition to the soft-
ware’s overall inheritance tree characteristics, these al-
gorithms will use metrics that reflect information on the
import and export coupling of class-attribute and class-
method relationships. Further, we incorporate informa-
tion relating to the response sets for each object in the
software, that is, the number of methods that can be exe-
cuted in response to messages being received by objects.

Keywords: Software Engineering, Graph Theory, Soft-
ware Metrics.

1. INTRODUCTION

The software industry’s adoption of object-oriented de-
sign and programming principles has permitted the cre-
ation of applications of increasing complexity and size.
Managers, programmers and software architects appreci-
ate tools that may aid in the identification, minimization
or correction of this complexity. Completely automated
tools - ones that glean all relevant features from the source
code itself, without programmer input - could be consid-
ered “holy grails.” That is, they never require additional
information from the programmer - information that if
not updated, becomes out of sync from the code base.
In this regard, one area of research usessoftware metrics

to identify and categorize potentially complex areas [3]
of applications. Armed with this information, managers
hope to assign programmers to these areas to remove, or
at least reduce, the unnecessarily complex parts of their
applications.

Many existing software metrics focus on complexity
at the object level. Metrics such aslines of code, num-
ber of methodsandcomments to codereflect the internal
complexity of an object. Metrics such asnumber of chil-
dren [1], number of parents, number of siblings, andre-
sponse set for an objectbegin to reflect how objects relate
to the software system as a whole.

We extend this notion by looking only at inter-object
relationships. Two graph theoretic flooding algorithm
will be presented, compared, and examined. The algo-
rithms aid software developers by automatically locat-
ing key sub-systems within software projects. This sub-
system breakdown provides a logical view of the applica-
tion as a whole.

Finally, all metrics presented here are gathered and
computed directly from source code, without any addi-
tional developer input. As a result, the metrics are per-
fectly synchronized with a changing code base. The met-
rics may be effortlessly applied to an already existing
project. The computed observations have a multitude of
uses, including: providing managers/lead programmers
with overall design input and providing new developers
with additional information about the code base.

2. METHODOLOGY

The metric acquisition and computation modules were
written in C++ as modules in Scopira [2]. As a mod-
ule algorithm development framework, metrics may be
added or modified by simply writing additional Scopira
modules while still reusing the existing infrastructure.

CCECE 2003 - CCGEI 2003, Montréal, May/mai 2003
0-7803-7781-8/03/$17.00c© 2003 IEEE

-001-

2.1. Data Acquisition

Raw C++ source code is processed through GCC-XML,
a “virtual” output target for the GNU C++ compiler. The
GNU C++ front end tokenizes and parses the source files
as usual, but instead of writing out an executable, the
GCC-XML back end takes the parsed information and
stores it in a matching XML file. By utilizing a modern
C++ compiler, we insure that all information is captured.

We process all the XML files produced by GCC-XML
to build theapplication graph. In this graph, a node is a
concrete class (i.e. templates are not included, but their
instantiations are).

Between the nodes, we have three (six if direction
is taken into account) types of edges:parent of/child
of, contains a (as a member object)/is contained byand
knows about/is known by.

Finally, we filter out all classes that do not belong to
our application, by pruning the nodes in the graph that
do not belong to the application’s name space(s). This
weeds out system objects, which are referenced by the
application, but are of no interest to our analysis.

2.2. Finding Key Classes

The first stage of analysis involveskey classes. A key
class is defined as an interface (a class that specifies only
an interface, no body), a base class (a class that is the
foundation of many other classes) or any class in be-
tween.

A straightforward, yet effective criteria was used to
find key classes; if a class had three or more immediate
decendant classes, it was deemed key.

For each key class, a supplementary metricinterface-
rate was computed. Interface-rate is the number of im-
mediate descendant classes divided over the total (limited
to a distance of three) descendant classes. Higher values
indicate a greater likelihood that this key class is an in-
terface, and not an implementation-providing base class.
This metric attempts to capture the essence that interface
classes tend to havewide, but shallow hierarchies, com-
pared to base classes that often havefuller hierarchies.

2.3. Area of Effect

For each key class, we will use a graph theoretic flood
fill algorithm to determine itsarea of effect. The area of
effect is the (estimated) set of all classes that are depen-
dent upon the key class. This dependence is stronger for
classes that were found to be “closer” to the key class
during the flooding.

Two flooding algorithms were developed and com-
pared: Descendant Flooding (DF) and Variable Flooding
(VF).

2.3.1. Descendant Flooding

DF only uses the descendant edges of the application
graph. This reflects the natural tendency for developers
to organize sub-systems by base classes. The algorithm
is as follows:

For each key classK and some nodeN , initialize
v(K, N) = 0. This is the current dependence value for
nodeN to key classK.

Executeflood(K, 10), whereflood(N, f), for node
N and flood valuef is defined (recursively) as: “Iff = 0,
stop. Ifv(K, N) > f , stop. Otherwise, letv(K, N) = f
and for each childC of N , executeflood(C, f − 1)”.

A nodeN belongs to key classK ’s area of effect if,
and only if,v(K, N) > 0.

In summary, this flooding technique simply finds all
the classes that are 10 or less edges away from the key.
Thev matrix represents the relative proximity to each key
class.

The initial value of10 was chosen – partially arbitrar-
ily – to represent the weak effect (and often loose cou-
pling) base classes have over classes that are 10 or more
nodes apart.

2.3.2. Variable Flooding

VF utilizes all the edge types in the application graph. By
including thecontains-aandknows-aboutrelationships,
this algorithm captures the dependencies that form from
the coupling and use of objects by other objects. The
algorithm is similar to DF:

For each key classK and some nodeN , initialize
v(K, N) = 0. This is the current dependence value for
nodeN to key classK.

Now, executeflood(K, 10), whereflood(N, f), for
nodeN and flood valuef is defined (recursively) as: “If
f = 0, stop. If v(K, N) > f , stop. Otherwise, let
v(K, N) = f . For each connection typet, and each
neighborC of N (and typet), executeflood(C, f −
cost(t))”. Wherecost(t) is defined below.

The cost functioncost(t) for a connection typet is the
cost (dependency-wise) to flood that particular connec-
tion type. This represents the relative ease (low cost) or
resistance (high cost) over which dependency constraints
flow over the various connection edges. The function is
defined as:

-002-

• cost(descendants) = 1. This represents the direct
dependence descendant classes have to their parent
classes.

• cost(is − contained − by) = 2. Container
classes are dependent on their member classes, but
not quite as dependent as they are to their parent
classes.

• cost(known − by) = 3. Users are highly depen-
dent on classes they utilize. However, this relation-
ship is weaker than containment and inheritance.

• cost(parents) = 6. Descendant classes have very
limited (if any) direct influence over parent classes.
Any influence they do have would purely be ap-
plication domain specific (for example, if a parent
needs to be adjusted to accommodate additional de-
scendant types).

• cost(contains − a) = 6. Container classes have
limited influence over the items they contain.

• cost(knows − about) = 6. Users have little (di-
rect) influence over the classes they use.

A nodeN belongs to key classK ’s area of effect if,
and only ifv(K, N) > 0.

2.4. Grouping

Regardless of the flooding algorithms chosen, a matrixv
is produced, such thatv(K, N) is the relative influence
key classK has over classN .

BecauseN may be influenced (v(K, N) > 0) for
manyK, we will sayN is part of group (class set)Kg, if
and only if,K has the highest influence of all other keys
classes for that particularN .

Classes that have zero influence ratings for all key
class are discarded.

Each class setKg is said to be a sub-system or group
or related classes.

2.5. Ordered Groups

We then sort all class clustersKg by the size of their set.
The size is a simple measure that effectively relates the
visibly and effect that particular key classK has over its
members.

Visualization is performing by showing the developer
this sorted list of clusters and providing and interface to
drill down and inspect individual clusters.

It is with these clusters of classes that the devel-
oper or manager may verify and inspect clusters of

classes. Anomalies and unintended clusters or groupings
are quickly noticed.

2.6. Results

To test out the accuracy of the sub-system detection/key
class grouping, these algorithms were applied to the
Scopira source code base and then examined by its lead
developer for accuracy and usefulness.

Scopira contains about 95,000 lines of C++ source
code. 49,000 lines encompass the Scopira core: schedul-
ing engine, fundamental data types and graphical front
end. About 46,000 lines of source code make up dataclas-
sification and related algorithm, utility and visualization
modules.

2.7. Key Classes

The key class search found 33 key classes from a total
762 classes. All 33 key classes were confirmed to be base
or interface classes. The search did fail to find some in-
terface and base classes. By definition, these missed key
classes all had less than three immediate descendants –
too small of a tree to be counted as a full sub-system
leader.

2.8. Groups

This section will compare some of the more notable key
class groups as produced by the DF and VF algorithms.
groups

• kernel i (DF: 1st with 142, VF: 1st with 152), base
interface for all modules. All algorithm modules
implement this interface causing this class to be
highly rated by both flooding types. Similar group
sizes, identical rankings.

• object(DF: 2nd with 65, VF: 2nd with 116) A gen-
eral base class for all reference countable (via auto
pointers) and serializable objects. A fundamental
class. The VF group was notably almost twice the
size of the DF group – a reflection of the pervasive-
ness of this base class across many edge types.

• proponentwidget(DF: 3rd with 22, VF: 5th with
25) Comparable group sizes, but slightly different
positioning in the sorted report list.

• oflow i (DF: 5th with 12, VF: 3rd with 27) An-
other case of VF awarding this pervasive interface
a group size of almost twice that of DF.

-003-

• full imagematrix base(DF: 30th with 4, VF: 7th
with 12) VF gave this key class a much higher
group size, and thus, a much better ranking.

In summary, for very large key class groups, DF and
VF give comparable rankings. and the expected primary
key classes surfaced to the top of the ordered list for
both algorithms. VF often will give base (non-interface)
classes larger effect groupings than DF. Closer examina-
tion from a sampling of such classes showed that VF also
includes – as expected – not only the descendant classes,
but several auxiliary and utility classes near the key class.
Finally, for all key class types, VFs group sizes were at
least as large, and often larger than DF’s. Again, this is
expected because VF utilizes all the edge types.

2.9. Orphans

DF orphaned 354 (46%) classes (out of 762) while VF
orphaned 210 (28%). Orphaned classes are those classes
that did not have any (zero) dependence on any key class.
Subsequent review of the orphaned classes illustrate that
small (parent-less) utility classes were orphaned, as well
as sub-systems with head classes that were not defined
as key classes (i.e., the top parent class had less than
the required three immediate descendant classes). These
cases were less numerous with VF that utilizes all the
edge types – and not just the parent/descendant edges –
to propagate dependence information.

However, the bulk of the orphaned classes came from
Scopira’s heavy use of Generic Programming (via C++’s
template mechanism). These classes were the results
of template instantiations, and usually had no parent or
descendant classes were relatively small and contained
many in-line methods. This grouping of classes in-
clude auto pointers (memory management), trait struc-
tures (type information), thread lockers (concurrency
control) and fundamental mathematical classes.

2.10. Utility Interfaces

One possible concern of the grouping algorithm was the
lack of distinction between key interface/base classes and
utility interface classes. Utility interface classes tend to
have descendants that span multiple sub-systems as they
tend to describe sub-system neutral activities.

Scopira is much more template heavy than interface
heavy, and as a result, only has two such utility interfaces.
Both utility interfaces (each with empty class groups)
were at the end of the sorted group list. For applications
and libraries that are more interface heavy (and as a re-

sult, have more utility interfaces) this phenomena may be
a concern.

One possible method of detecting utility interfaces
could exploit the pattern that most utility classes are not
the sole parent classes for many of their descendants.
Therefore, for a key classK, we count how many of its
immediate descendant classes have more than one parent.
The greater this count, the greater likelihood that classK
is a utility interface.

3. CONCLUSION

Overall, we found that the flooding based algorithm cor-
rectly found all the notable key classes and properly
grouped their member classes. On our test source code
base, the reported sub-systems correctly matched those
that were intended in the application design.

Furthermore, by examining two different algorithms,
we found that the flooding algorithm that did not limit
itself to traditional descendant/parent relationships gave
more accurate grouping reports.

Finally, these metrics are gathered and computed di-
rectly from the application’s source code, without de-
veloper input. This permits their application to existing
projects and gives developers instantaneous feedback.

4. ACKNOWLEDGMENTS

NSERC is gratefully acknowledged for its financial sup-
port of this work.

5. REFERENCES

[1] S.R. Chidamber and C.F. Kemerer. A metrics suide
for object-oriented design.IEEE Trans. Software En-
gineering, 6:476–493, June 1996.

[2] A.B. Demko, N.J. Pizzi, and R.L. Somorjai. Scopira -
a system for the analysis of biomedical data. InCana-
dian Conference on Electrical and Computer Engi-
neering, pages 1093–1098, 2002.

[3] Pizzi N.J., Demko A.B., and Vivanco R. Discrimina-
tion of software quality in a biomedical data analysis
system. InProc Joint 9th IFSA World Congress and
20th NAFIPS Intl Conf, Vancouver, Canada, pages
1702–1707, July 2001.

-004-

