
Scopira used to build a suite of applications and plug-ins, each with varying scopes of complexity:

• Algorithms prototyping, possibly with visualization (BigVol)

• Parallelized algorithms, via MPI, for the analysis and classification of biomedical data (SFS).

• Plug-ins for pattern recognition algorithms, visualization, and data projection (RDP).

• Full, stand-alone applications (ScopiraPA, EvIdent®, Opus)

Parallel Computing

Scopira: An Open Source C++ Framework for Biomedical Data
Analysis Applications – A Research Project Report

Aleksander Demko1,2, Rodrigo A. Vivanco1, Nick J. Pizzi1,2

1Institute for Biodiagnostics, National Research Council of Canada, Winnipeg, Canada. 2Department of Computer Science, University of Manitoba, Winnipeg, Canada

Scopira
Scopira is an open source, object-oriented and generic C++ framework for scientific computing
applications with emphasis on biomedical data analysis.

• Spectra and images (magnetic resonance, infrared, gene microarrays, Raman, mass spec).

• Visualization (2D and 3D via OpenGL).

• Computationally efficient.

• Parallel algorithm development (MPI and a dedicated agent facility). Parallel Computing

mpi

agent

Foundation

tool

core

basekit
OpenGL

coregl

GTK+ Graphics

coreui

uikit

lab

Scopira
Framework

tool Subsystem
The tool subsystem provides a host of generic facilities
and utilities for all types of Scopira based applications.

• Reference counting with “smart pointers”.

• Threads and concurrent programming.

• Random number generators (“real” and pseudo) and
distributions.

• Input/output & object serialization.

I/O & Serialization: flows
Scopira contains a layered I/O system with flows. Flows
provide a three tier interface architecture for the I/O of
bytes, simple data types and objects (serialization).

core Subsystem
The core subsystem builds on the tool subsystem and
provides non-graphical features useful for building
applications.

• basic_loop main loop for parsing configuration
options.

• Powerful plug-in loading systems.

• Flexible object registration system for registering
objects for serialization and virtual construction.

• Dynamic model/view system.

Models and Views
Scopira provides a dynamic system (via run-time
registration) for applications and plug-ins to declare
models and views.

• Models are objects that are monitored by zero or
more views. Views themselves can be graphical or
non-graphical.

• A project is a model that organizes a collection of
models in a tree like fashion. Users may use projects
to save their data sets as related workspaces.

basekit Subsystem
The basekit subsystem contains various numerical
routines and the core numerical data structure, narray.

• Generic, via C++ templates structure. Can be used
with ANY data types (ints, floats, complex, etc) and
ANY dimension (vector, matrix, cube, etc).

• Complementary nslice virtual sub-view, any size <=
narray dimensions.

• As-good-as-C performance via templates and inline
methods.

• Range checked access via assert(), (debug mode
only).

• STL-style iterators and thereby usable with STL
algorithms.

• DirectIO back end, to directly access files as if they
were in memory (via the operating system's mmap
function)

DirectIO: Memory Mapping

Binary sinks
(end terminators for

binary streams)

Network, Disk files,
Memory

Binary transformers
(transform binary

streams)

Hex encoding, Encryption,
Compression, etc

Data type encoding layer
(converts basic data types to bytes)

Convert to ASCII, Convert to Binary

Object serialization layer
(converts objects to data types)

project

model model

model

model

view

view

view

view

view

narray<double,3>

nslice<double,2>

large disk file

system
memory

operating system
handles paging

mpi
This subsystem provides a light
(inline) helper layer for Scopira apps
that use the MPI (Message Passing
Interface) API.

• Aware of narrays and uses type
information (via C++ traits classes)
to deduce many typical parameters
needed for many MPI functions.

• Drastically reduce the amount of
information needed from the
programmer.

Foundation

agent
Agent based user application include:

• Agent objects, which represents the
application on an agent network.

• Tasks (agent-managed) that send
messages to other tasks & migrate
between agents over the network.

This subsystem will include:

• Parallel algorithm API. Focus: OOD,
narrays, & flow-based serialization.

• Flow-based messaging API.

• Efficient, scalable message routing
and task migration (cf. load
balancing) & check-pointing option.

• Decentralized (local-focus)
resource discovery and utilization.

A user application and various agent
instances managing a collection of tasks

task

task

task
task

task

Agent Instance

User Application

(possibly with GUI,
plug-ins, etc)

task
task

Remote Agent
Instance

task
task

Remote Agent
Instance

Inter-node network
communication

agent types
Local: non-network aware, single
machine (but multi-threaded).

Cluster (under development): Used
with dedicated, fully connected and
persistent Beowulf-like clusters.

• Load balancing done at global level
as resource allocation decisions.

Decentralized (under development):
For larger, complex agent networks.

• Allocate resources based on local
information only (permits network
scalability); may be used over
unstable network links to possibly
unreliable remote agents.

• Most dynamic agent, requiring
many peer-to-peer like approaches
to resource allocation/deployment.

Dedicated cluster

Agent Agent Agent

Agent Agent Agent

Agent Agent Agent

Agent Agent Agent

Agent Agent

Agent Agent

Agent Agent

Dedicated cluster

Logistics proxy

Agent

Interactive user

Agent

Agent

Other users

Agent

Agent

Agent

Agent
Idle desktops

Decentralized agents

Graphics Subsystems
• coreui: basic GTK+-based widgets, window

classes, and layout managers.

• uikit: builds on coreui to provide more complex
visualization widgets and views (eg, plotters,
image viewers, scalable matrix editor).

• lab: provides API for rapid development of
algorithms that need graphical output. Allows
main thread to do the computations while a
background thread handles GUI event loop.

• coregl: builds on coreui to provide foundation
for building 3D visualization widgets. Uses
GTKGLEext, a small library that allows GTK+
apps to use the industry standard OpenGL
API.

EvIdent®

Project based application for the detection of “novel” activations
(time courses) in functional magnetic resonance neuroimages.

Applications

BigVol
A 64-bit and OpenGL-based 3D visualizer
for large (>10 gigabytes) datasets.

Opus
Project based application for processing/visualizing spectra.

SFS
Parallelized classification methodology for
stochastic feature selection.

RDP
Relative Distance Plane: fast projection
technique for high-dimensional data
available in ScopiraPA.

