
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2009; 39:641–660
Published online 31 December 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.915

Scopira: an open source C++
framework for biomedical data
analysis applications

Aleksander B. Demko1,2 and Nick J. Pizzi1,2,∗,†

1Institute for Biodiagnostics, National Research Council of Canada,
Winnipeg, Canada
2Department of Computer Science, University of Manitoba, Winnipeg, Canada

SUMMARY

In many biomedical research laboratories, data analysis and visualization algorithms are typical prototypes
using an interpreted programming language. If performance becomes an issue, they are ported to C and
integrated with interpreted systems, not fully utilizing object-oriented software development. This paper
presents an overview of Scopira, an open source C++ framework suitable for biomedical data analysis
and visualization. Scopira provides high-performance end-to-end application development features, in
the form of an extensible C++ library. This library provides general programming utilities, numerical
matrices and algorithms, parallelization facilities, and graphical user interface elements. Copyright ©
2008 John Wiley & Sons, Ltd.

Received 17 July 2008; Revised 12 November 2008; Accepted 22 November 2008

KEY WORDS: data analysis; visualization; software engineering; application development framework; distributed
computing

1. INTRODUCTION

The initial driving force for this project was to develop a comprehensive, object-oriented program-
ming architecture using C++ for the development of applications relating to exploratory data
analysis of magnetic resonance images (MRI), especially functional MRI [1]. Subsequently, we
expanded the architecture to deal with confirmatory and exploratory biomedical data analysis, visu-
alization, and interpretation, in general. This approach strikes a balance between slow interpreted
languages such as IDL [2,3] and MATLAB® [4,5] and fast compiled languages such as C and

∗Correspondence to: Nick J. Pizzi, Institute for Biodiagnostics, National Research Council of Canada, 435 Ellice Avenue,
Winnipeg MB, Canada R3B 1Y6.

†E-mail: pizzi@nrc-cnrc.gc.ca, pizzi@cs.umanitoba.ca

Copyright q 2008 John Wiley & Sons, Ltd.



642 A. B. DEMKO AND N. J. PIZZI

FORTRAN. Although well suited for algorithm prototyping and ad hoc data visualization, inter-
preted languages are simply not suitable for application development. Conversely, C and FORTRAN,
although efficient, lack basic and expected language features such as object orientation or basic
memory management required for building large-scale applications. C++ was chosen to straddle
the two extremes, and even though it has been somewhat overshadowed by newer languages such
as Java or C#, it is still the only language with features such as generics and object orientation that
compile into efficient machine code.
Our motivation behind the design of Scopira was to satisfy the needs of three categories of

users within the biomedical research community: developers, scientists/technologists, and data
analysts. With the design, implementation, and validation of new biomedical data analysis software,
developers typically need to incorporate legacy systems often written in interpreted languages.
When this is coupled with the facts that, in a research environment, user requirements often change
(sometimes radically) and that biomedical data are becoming ever more complex and voluminous,
a development framework must be versatile, extensible, and exploit distributed, generic, and object-
oriented programming paradigms. For the biomedical scientist or technologist, data analysis tools
must be intuitive with responsive interfaces that operate both effectively and efficiently. Finally, the
biomedical data analyst has requirements straddling those of the developer and the scientist. With
an intermediate level of programming competence, they require a relatively intuitive development
environment that can hide some of the low-level programming details, while at the same time
allowing them to easily set up and conduct numerical experiments that involve parameter tuning and
high-level looping/decision constructs. As a result of this motivation, the emphasis with Scopira [6]
has been on high-performance, open-source development and the ability to easily integrate other
C/C++ libraries used in the biomedical data analysis field by providing a common OOP API
for applications. This library provides a large breadth of services that fall into the following four
component categories:
Scopira Tools provide extensive programming utilities and idioms useful for all application types.

This category contains the reference counted memory management system, flexible/redirectable
flow input/output system, which supports files, file memory mapping, network communication,
and check sum calculation, as well as object serialization and persistence, reproducible and
tunable random number generation, universally unique identifies (UUIDs) and XML parsing and
processing.
The Numerical Functions all build on the core n-dimensional narray concept (see Section 4).

C++ generic programming is used to build custom, high-performance arrays of any data type and
dimension. General mathematical functions build on the narray. A large suite of biomedical data
analysis and pattern recognition functions are also available.
Multiple APIs for Parallel Processing are provided, allowing algorithms to scale with available

processor and cluster resources. Scopira provides easy integration with native operating system
threads, MPI [7,8] and PVM [9,10] libraries. A Scopira-based object-oriented framework, Scopira
Agents Library, is included, which may be embedded into desktop applications allowing them to use
computational clusters automatically, when detected. Unlike other parallel programming interfaces
such as MPI and PVM, Scopira’s facilities provide an object-centric strategy with support for
common parallel programming patterns and approaches.
Finally, a Graphical User Interface (GUI) Library based on GTK+ is provided. This library

provides a collection of useful widgets including a scalable numeric matrix editor, plotters, image
and viewers as well as a plug-in platform and a 3D canvas based on OpenGL® [11,12].

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 643

The following section describes several Scopira-based data analysis applications used by the
biomedical research community. In the subsequent four sections we describe, in turn, each of the
Scopira component categories, which are followed by some concluding remarks.

2. APPLICATIONS

We implemented several biomedical data analysis applications using Scopira. Some are in-house,
proprietary, and highly specialized systems, while others are open-source applications that are
available to the biomedical research community at large. These applications run the gamut from
confirmatory to exploratory data analysis, image processing, pattern recognition, classification, and
visualization. We briefly present three applications developed using Scopira.
One Scopira-based application is EvIdent® [13], an exploratory data analysis system for rapidly

investigating novel events in a set of two- or three-dimensional images (e.g. MRI, infrared, spec-
troscopic maps, etc.) as they evolve over time or frequency (or any other analysis dimension). For
instance, in a series of functional magnetic resonance neuroimages, novelty may manifest itself as
neural activations over a time course (see Figure 1). The core of the system is an enhanced variant
of the fuzzy c-means clustering algorithm [14]. Fuzzy clustering obviates the need for models of the
underlying requisite biological function, models that are often statistically suspect. EvIdent® offers
several innovations: (i) biomedical researchers may probe for unanticipated but domain-significant
structure in the data, (ii) flexible generation of unbiased, testable models, (iii) rapid analysis of data

Figure 1. Functional MRI activation map viewer in EvIdent®.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



644 A. B. DEMKO AND N. J. PIZZI

Figure 2. Feature frequency histogram used by SFS, a Scopira-based parallelized
biomedical data classification system.

in complex cognitive experiments, and (iv) excellent precursor and complement to any model-based
inferential method.
Another application we implemented with the Scopira framework is stochastic feature selection

(SFS), an iterative and highly parallelized feature dimensionality reduction technique [15] for the
classification of complex voluminous biomedical data. SFS randomly assigns the original data
set samples (e.g. magnetic resonance spectra) into design and test sets. Once the design phase is
complete (i.e. classification coefficients have been determined), the test set is used to externally
validate the classification performance. The stochastic nature of SFS is controlled by a feature
frequency histogram (see Figure 2) whereby the performance of each classification iteration is
assessed using a fitness function. An ad hoc cumulative distribution function, constructed from this
histogram, is iteratively used to randomly sample new features (rather than each feature having
an equal likelihood of being selected for a new classification iteration, only those features used in
previous ‘successful’ iterations are selected). Via Scopira’s parallelization facilities (see Section 5),
SFS bundles classification iterations to minimize inter-process communication and maximize CPU
loads. Furthermore, while SFS exploits parallelism, it remains (optionally) strictly deterministic, that
is, results are perfectly reproducible regardless of computational load (an extremely useful benefit
for biomedical research). The third Scopira-based application involves the analysis, visualization
(via Scopira and VTK), and interpretation of biomedical images required using optical coherence
tomography (OCT) [16], an optical imaging modality that provides micrometer scale resolution

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 645

morphological images. OCT is similar to ultrasound in operation except that low coherent near
infrared light is used instead of sound. The light is focused onto a sample and back reflections
from within the sample are recorded to create a morphological image of the interior structure
of the sample. The back reflections occur from changes in optical density at tissue boundaries
and cellular structures. The three-dimensional morphological images have an axial resolution of
10�m and a transverse resolution of 25�m, which are superior to standard ultrasound images. The
coherence requirement of OCT in highly scattering biological tissue limits penetration depths to
2mm. However, the method is fully implemented in fiber optics, allowing sub-millimeter probes
to collect images via catheters and endoscopes [17].

3. PROGRAMMING UTILITIES

Scopira consists of modular subsystems that can be used as needed by developers. The Scopira Tools
subsystem provides generic facilities useful in many programming domains, not just numerical and
scientific computing.
The standard C++ library is comparatively slow in adopting and standardizing new functionality.

This is done to maximize quality, but unfortunately forces developers to go to third-party libraries
for needed functions. This can quickly lead to many external library dependencies, each with their
own disjoint designs and interface styles. This leads to more complex and fragile user code, as
developers try to bridge various libraries into their own application.
Many of the core functions (especially in the Scopira Tools subsystem) can be found in other

libraries (such as Boost). However, rather than force the user to integrate many libraries for various
features, it was deemed much more efficient to provide these basic features all within Scopira itself.
Large libraries (such as GUI libraries or MPI) are not re-implemented, but simply augmented.
Although this can be considered poor code reuse, the benefits of providing these functions within
one library, all via a common and consistent interface was too great to ignore. This technique of
developing a common interface to basic functions over importing libraries is common to many large
libraries, such as MFC [18,19], Qt [20,21], wxWidgets [22,23], and VTK [24,25].
Libraries such as Boost [26,27] try to alleviate this by providing various common facilities in a

high-quality library, with faster implementation cycles than the standard C++ library. For Scopira,
Boost did provide some features readily (such a threads), others were in development (such as smart
pointers), took a long time to develop (such as serialization), stalled in their development (such as
UUIDs) or decided not to implement (such as XML processing). However, these small features were
not deemed significant enough to introduce a new library dependency and programming interfaces.
Perhaps as various Boost libraries get adopted in future C++ standards, they will become the
common building blocks of many more C++ libraries, frameworks, and applications.

3.1. Memory management

An intrusive reference counting scheme provides the basis for memory management. The scheme
is considered intrusive as it records an object’s reference count within the object itself, typically by
having the object descend from a common base class. Unlike many referencing counting systems
(such as those in VTK [7] and GTK+ [28,29]), Scopira’s system uses a decisively symmetric
concept. References are only added through the add ref and sub ref calls—specifically, the object

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



646 A. B. DEMKO AND N. J. PIZZI

itself is born with a reference count of zero. This greatly simplifies the implementation of smart
pointers and easily allows stack allocated use (by passing the reference count), unlike VTK and
GTK+ where objects are born with a reference count and a modified reference count, respectively.
Scopira implements a template class count ptr that emulates standard pointer semantics while

providing implicit reference counting on any target object. Alternatively, the intrusive ptr from
the Boost library may also be used, as Scopira’s reference counting scheme is compatible with its
requirements. With either smart pointer, reference management becomes considerably easier and
safe, a vast improvement over C’s manual memory management.
Boost’s smart ptr template class was also considered, but initially ruled out for a variety of

reasons. At the time of the reference counting scheme’s design (2001), smart ptr’s development
was still in a state of flux, and it was deemed onerous to require developers to install Boost for this
single class. The class provides non-intrusive reference counting, meaning that it keeps the reference
count outside of the target object. Although this has huge flexibility benefits (as it can be applied
to any type), it requires the programmer to be diligent (and more verbose) and always use the class
when passing the class between methods and functions. We found that allowing less experienced
C++ programmers to casually convert their reference back to standard pointers occasionally allows
for much more concise and familiar code while maintaining proper reference counts, a feat that
is impossible (due to their design) with non-intrusive smart pointers. However, Boost’s smart ptr
implementation is on track to be included in the next C++ standard, which will greatly increase
its exposure and familiarize a much larger portion of C++ programmers to flexible and powerful
reference counting memory management, providing a common standard that all C++ libraries
can use.

3.2. Input/Output

Scopira provides a flexible, polymorphic, and layered input/output system (see Figure 3). Flow
objects may be linked dynamically to form I/O streams. Scopira includes end flow objects, which
terminate or initiate a data flow for standard files, network sockets, and memory buffers. Trans-
form flow objects perform data translation from one form to another (e.g. binary-to-hex), buffer
consolidation and ASCII encoding. Future transformers include CRC calculators, compressors, and
cryptographic ciphers. Serialization flow objects provide an interface for objects to encode their
data into a persistent stream. Through this interface, large complex objects can quickly and easily

Binary Sinks 

(initiators/terminators of binary data) 

Disk Files, Network Sockets, Memory 

Binary Transformers 

(transform binary streams) 

Hexadecimal encoding, hashing, compression 

Data Type Encoding 

(encodes basic data types to binary) 

Verbose text converter, Compact binary converter 

Object Serialization 

(recursively encodes complete object trees and datasets) 

Figure 3. Scopira input/output stack.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 647

encode themselves to disk or over a network. Upon reconstruction, the serialization system re-
instantiates objects from type information stored in the stream. Shared objects—objects that have
multiple references—are serialized just once and properly linked to multiple references.

3.3. Configuration and plug-ins

A platform-independent configuration system is supplied via a central parsing class. This class is
able to accept input from a variety of sources (configuration files, command line parameters, etc.)
and present them to the programmer in one consistent interface. The programmer may also store
settings and other options via this interface, as well as build GUIs to aid in their manipulation by
the end user.
Using a combination of the serialization-type registration system and C++’s native RTTL func-

tions, Scopira is able to dynamically (at runtime) allow for the registration and inspection of object
types and their class hierarchy relationships. From this, an application plug-in system can be triv-
ially built by allowing external modules (dynamic link libraries) to register their own types as being
compatible with an application, providing a platform for third-party application extensions.

3.4. Other utilities

Finally, the tools subsystem provides a variety of other services and interfaces. Native operating
system threads (via the POSIX threads interface) are presented as C++ objects, with mutex locking
and shared areas accessed via classes that follow the Resource Acquisition Is Initialization principle.
Generic arrays provide a lightweight (yet still STL like) array class that is simpler than STL’s vector
class and not specific to numeric computing as is Scopira’s narray. Random number generation
(inspired by Boost’s random library) is also included. UUIDs and uniform resource locators (URLs)
are provided. XML processing (provided by the libxml2 library) is an optional feature, allowing
one to build open and easy to use data file formats.

4. N-DIMENSIONAL DATA ARRAYS

4.1. Existing arrays

The C and C++ languages provide the most basic support for one-dimensional arrays, which are
general and are closely related to C’s pointers. However, although usable for numerical computing,
they do not attempt to provide the additional functionality that scientists demand, such as easy
memory management, mathematical operations, or fundamental features such as storing their own
dimensions. Multiple-dimensional arrays are even less used in C/C++, as they require compile-
time dimension specifications, drastically limiting their flexibility.
The C++ language, rather than design a new numeric array type, provides all the necessary

language features for developing such an array in a library. Generic programming (via C++
templates, that allow code to be used for any data types at compile time), operator overloading (e.g.
being able to redefine the plus ‘+’ or assignment ‘=’ operators), and inlining (for performance)
provide all the tools necessary to build a high-performance, usable array class.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



648 A. B. DEMKO AND N. J. PIZZI

Users have created their own libraries to fill the void left by the lack of standardized multi-
dimension array classes in C++. These libraries vary in performance, API style, and focus. Some
of the better established packages will be discussed here.
The highly regarded Boost C++ libraries [7] contain not one, but two numerical array libraries,

both introduced in version 1.29 of the library collection: Boost.MultiArray and uBLAS.
Boost.MultiArray [in boost] provides a basic, but complete n-dimensional array class with support

for views and slices. The library, like many of those in the Boost collection, utilizes advanced C++
features and idioms to achieve their goals of performance and completeness, sometimes sacrificing
ease of use for newer C++ programmers. This library, at its core has the most in common with
Scopira narray classes (see the following section), differing mainly in their notions of element
access and use of temporaries.
uBLAS is a C++ library [in boost] that provides BLAS functionality for a variety of different

matrix types. Building on Basic Linear Algebra Sub-programs (BLAS) FORTRAN library, uBLAS is
designed with performance in mind (especially with the goal of being no worse that the FORTRAN
predecessors) and focuses on linear algebra operations and matrix data types. The library supports
a variety of matrix types (including dense, packed, and sparse matrices) and does not generalize at
all to larger dimensions.
The Blitz++ library [30] is an older library that provides an n-dimensional array class, complete

with slicing. The API focuses on the array classes itself, and does not offer a collection of algorithms,
or interpolation aids with visualization systems or other libraries. The development of Blitz++
has slowed after a decade, and has switched to a maintenance mode without reaching a seminal 1.0
version.
Although there are numerous implementations of n-dimensional array classes, algorithm devel-

opers and users often need not be too concerned with over committing or being locked into one
particular implementation. Owing to the large influence of the C++ STL on the various library
developers, there are only small set of element access styles that are used. Many also offer raw C-
array-like access to ease interfacing with other libraries. Using simple adapter classes or systematic
source code factoring, developers may quickly update their code to work with any new libraries.

4.2. narray class

Rather than force the developer to add another dependant library for an array class, Scopira provides
n-dimensional arrays through its narray class. This class takes a straightforward approach, imple-
menting n-dimensional arrays as any C programmer would have, but providing a type safe, templated
interface to reduce programming errors and code complexity. The internals are easy to understand,
and the class works well with standard C++ library iterators as well as C arrays, minimizing
lock-in and maximizing code integration opportunities.
Using basic C++ template programming, we can see the core implementation ideas in the

following code snippet:

template <class T, int DIM> class narray {

T* dm_ary; // actual array elements

nindex<DIM> dm_size; // the size of each of the dimensions

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 649

T get(nindex<DIM> c) const {

assert(c<dm_size);

return dm_ary[dm_size.offset(c)];

}
}

From this code snippet we can see that an narray is a template class with two compile-time
parameters: T , the element data type (int, float, etc.) and DIM, the number of dimensions (1, 2, 3,
etc.). The actual elements are stored in a dynamically allocated C array, dm ary. The dimension
lengths are stored in an nindex type, a generic class that is used to store array offsets.
A generalized accessor is provided, which uses the nindex-offset method to convert the dimension-

specific index and size of the array into an offset into the C array. This generalization works for
any dimension size.
Another feature shown here is the use of C’s assert macro to check the validity of the supplied

index. This boundary check verifies that index is indeed valid otherwise failing and terminating
the program while alerting the user. This check greatly helps the programmer during the develop-
ment and testing stages of the application, and during a high-performance/optimized build of the
application, these macros are transparently removed, obviating any performance penalties from the
final, deployed code.
More user-friendly accessors (such as those taking an x value or an x and y value directly) are

also provided. Finally, C++’s operator overloading facilities are used to override the bracket ‘[]’
and parenthesis ‘()’ operators to give the arrays a more succinct and natural feel, over explicit get
and set method calls.

4.3. nslice class

The nslice template class is a virtual n-dimensional array that is simply a reference to an narray.
The class only contains dimension specification information and is easily copyable and pass-
able as function parameters. Element access translates directly to element accesses in the host
narray. An nslice must always be of the same numerical type as its host narray, but can have
any dimensionality less than or equal to the host. This flexibility is very powerful; one could
have an one-dimensional vector slice from a matrix, cube or five-dimensional array, for example.
Matrix slices from volumes are also quite common (see Figure 4). These sub slices can also
span any of the dimensions/axes, something not possible with simple pointer arrays (for example,
matrix slices from a cube array need not follow the natural memory layout order of the array
structure).

4.4. Memory mapping

The narray class provides hooks for alternate memory allocation systems. One such system is the
DirectIO mapping system. Using the memory mapping facilities of the operating system (typically
via the mmap function on POSIX systems), a disk file may be mapped into memory. When this

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



650 A. B. DEMKO AND N. J. PIZZI

narray<double,2>

nslice<double,2>

Figure 4. An nslice reference into an narray data.

memory space is accessed, the pages of the files are loaded into memory transparently. Writes to
the memory region will result in writes to the file.
This allows files to be loaded in portions and on demand. The operating system will take care of

loading and unloading the portions as needed. Files larger than the system’s memory size can also
be loaded—the operating system will keep only the working set portion of the array in memory.
The programmer must be aware of this, however, and take care to keep the working set within the
memory size of the machine. If the working set exceeds the available memory size, performance
will suffer greatly as the operating system pages portions to and from disk (this excessive juggling
of disk-memory mapping is sometimes called ‘page thrashing’).

5. PARALLEL PROCESSING

With the increasing number of processors in both the users’ desktops and in cluster server rooms,
computationally intensive applications and algorithms should be designed in a parallel manner if
they are to be relevant in a future that depends on multiple-core and cluster computing as a means
of scaling processing performance. To take advantage of the various processors within a single
system or shared address space (SAS), developers need only utilize the operating system’s thread
API or shared memory services. However, for applications that would also like to utilize the cluster
resources to achieve greater scalability, explicit message passing (MP) is used. Although applying a
SAS model to cluster computing is feasible, to achieve the best performance and scalability results,
an MP model is preferred [31].
Scopira includes support for two well-established MP interfaces, MPI and PVM, as well as a

custom, embedded, object-oriented MP interface designed for ease of use and deployment.

5.1. MPI and PVM

This subsystem provides a set of narray aware template functions and input/output classes that
allow developers to easily interface with the MPI and PVM programmer’s APIs. Using C++ trait
classes for type information and the size data already stored in narray, these functions drastically
reduce the amount of parameters needed from the programmer thereby reducing common mistakes
when using these libraries.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 651

5.2. Scopira agents library

The Scopira Agents Library (SAL) is a parallel execution framework extension with several notable
goals particularly useful to Scopira-based applications. The API, which is completely object-
oriented, includes functionality for: (i) using the flow system for messaging, (ii) task movement,
(iii) check-pointing (supporting both primitive and basic data types as well as user-defined objects),
and (iv) the registration system for task instantiation.
SAL introduces high-performance computing to a wider audience of users by permitting devel-

opers to build standard cluster capabilities into desktop applications, allowing those applications
to pool their own as well as cluster resources. This is in contrast to the goals of MPI (providing
a dedicated and fast communications API standard for clusters) and PVM (providing a virtual
machine architecture among a variety of powerful platforms).
By design, SAL borrowed a variety of concepts from both MPI and PVM. SAL, like PVM,

attempts to a build a unified and scalable ‘task’ management system with an emphasis on dynamic
resource management and interoperability. Users develop intercommunicating task objects. Tasks
can be thought of as single processes or processing instances, except they are implemented as
language objects and not operating system processes. An agent manages one or more tasks, and
teams of agents communicate with each other to form computational networks (see Figure 5). The
tasks themselves are coupled with a powerful MP API inspired by MPI. Unlike PVM, SAL also
focuses on ease of use: emphasizing automatic configuration detection and de-emphasizing the need
for infrastructure processes.
When no cluster or network computation resources are available, SAL uses operating system

threads to enable multi-programming within a single OS process and thereby embedding a complete
MP implementation within the application (greatly reducing deployment complexity). Applications
always have an implementation of SAL available, regardless of the availability or access to cluster
resources. Developers may always use the MP interface, and their application will work with no
configuration changes from both single machine desktop installations to complete parallel compute
cluster deployments.
The mechanics and implementation of the agents and their load balancing system are built into the

agents extension library, and thereby, Scopira applications. Users do not need to install additional
software, nor do they need to explicitly configure or setup a parallel environment. This is paramount

Remote Agent Instance 

Task 

Task 

Remote Agent Instance 
Embedded

Agent Instance 
User Application 

Front-End

(possibly with GUI, 
plug-ins, etc.) Task 

Task 

Task 

Task 

Task 

Task 

Figure 5. SAL tasks and agents topology.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



652 A. B. DEMKO AND N. J. PIZZI

in making cluster and distributed computing accessible to the non-technical user, as it makes it a
transparent feature in their graphical applications.

5.2.1. Messaging

SAL provides an object-oriented, packet based and routable (like PVM, but unlike MPI) API for MP.
This API provides everything needed to build multi-threaded, cluster-aware algorithms embeddable
in their applications.
Tasks are the core objects that developers build for the SAL system. A task represents a single job

or instance in the agent system, which is analogous to a process in an operating system. However,
they are almost never separate processes, but rather grouped into one or more agent processes that
are embedded into the host application. This is unlike most existing parallel APIs, that allocate
one OS process per task concept, that, although conceptually simpler for the programmer, incurs
more communication and start-up overhead, as well as making task management more complex
and OS dependent. The tasks themselves are language-level objects but are usually assigned their
own operating system threads to achieve pre-emptive concurrency.
A context object is a task’s gateway into the SALMP system. There may be many tasks within one

process; hence, each will have differing context interfaces—something not feasible with an API with
a single, one-task-per-process model (as used in PVM or MPI). This class provides several facil-
ities, including: task creation and monitoring; sending, checking and receiving messages; service
registration; and group management. It is the core interface a developer must use to build parallel
applications with SAL.
Developers often launch a group of instances of the same task time, and then systematically parti-

tion the problem space for parallel processing. To support this popular paradigm of development,
SAL’s identification system supports the concept of groups. A group is simply a collection of N
task instances, where each instance has a groupid ∈[0,N−1]. The group concept is analogous to
MPI’s communicators (albeit without support for complex topology) and PVM’s named groups.
This sequential numbering of task instances allows the developer to easily map problem work units
to tasks. Similar to how PVM’s group facility supplements the task identifier concept, SAL groups
build on the UUID system, as each task still retains—and may use—their underlying UUID for
identification.
The messaging system within SAL is built on both the generic Scopira I/O layer as well as the

UUID identification system. SAL employs a packet-based (similar to PVM) message system, where
the system only sends and routes complete messages, and not the individual data primitives (as MPI
can and often does) and objects within them. Only after the sending task completes and commits
a message is it processed by the routing and delivery systems. The SAL agent uses OS threads
to transport the data, freeing the user’s thread to continue to work. Overlapping IO to increase
processor utilization is also used by some implementations of MPI, such as USFMPI [32].
Sending (committing) the data during the send msg object’s destruction (that is, via its destructor)

was the result of an intentional design decision. In C++, stack objects are destroyed as they exit
scope. The user should therefore place a send msg object in its own set of scope-braces, which
would constitute a sort of ‘send block’. All data transmissions for the message would be done
within that block, and the programmer can then be assured that the message will be sent at the end
of the scope block without having to remember to do a manual send commit operation. Similarly,

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 653

the receiver uses a recv msg object to receive, decode and parse a message packet, all within a
braced ‘receive block.’
The following code listing provides an example of a task object that, via its context interface

(the interface to the message network), is sending a variety data objects using the object-oriented
messaging API:

// declare my task object and its run method

class mytask : public agent_task_i

{ public: virtual void int run(task_context &ctx); };

int mytask::run(task_context &ctx) {

// send some data to the master task

narray<double,2> a_matrix;

{ // this scope (or send) block encapsulates the sent message

send_msg msg(ctx, 0); // prepare the message to task #0

msg.write_int(10); // send one integer

msg.save(a_matrix); // send a matrix - type safe

msg.save(user_object); // send a user object - via serialization

// at this point, msg’s destructor will be called (automatically)

// triggering the sending of the message

}
}

5.2.2. Scheduling engines

SAL consists of four components. The central component is the messaging API. Generic services
and other messaging interfaces utilize this API. Under the hood, the agent infrastructure code
implements the API, which in turn selects and loads an engine (the task and messaging system)
at runtime. The engine component implements the bulk of the API code and is responsible for
task management, message transport, and processor management. SAL currently has two types

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



654 A. B. DEMKO AND N. J. PIZZI

of engines, a ‘local’ engine that uses operating system threads on a single host machine and a
‘network’ implementation that is able to utilize a network of workstations.
The ‘local’ engine is a basic multi-threaded implementation of the SAL API. It uses the operating

system’s threads to implement multiprocessing within the host application process. That is, the
engine lacks the networking abilities to manage separate nodes and intercommunication but is able
to use all the processors on the host machine by using operating system threads within the host
process.
As this engine is contained within a single process, it is the fastest and easiest to use for application

development and debugging. The programmer may fully design and test their parallel algorithm and
its messaging logic before moving to a multi-node deployment. Furthermore, as multi-processor
and multi-core desktop systems become more commonplace, this basic engine may also be useful
for low to mid-range deployments and may be suitable for users who may not need full cluster
resources in most situations. The local engine is always available and requires no configuration
from the user. Developers need not write a dedicated non-MP versions of their algorithms simply
to satisfy users that may not go to the trouble of deploying a cluster.
The local engine does no load balancing. As the engine provides as many worker threads as

active tasks, it relies on the operating system’s ability to manage threads within the processors. This
works quite well, when the number of tasks instantiated into the system is a function of the number
of physical processors, as encouraged by the API. As there is only one primary user/initiator in
a local engine (that is, the host application’s user), the number of task groups in the system is
predictable (often, one).
In summary, we find the implementation of the local engine to be relativity straightforward.

Without the complexities of network communication, the engine implementation itself is simply
a collection of shared associative arrays, with various levels of mutexes and conditions all shared
by a group of worker operating system threads. This makes for a perfect reference implementation
of the API, useful for both debugging and for production deployments where the user’s desktop
machine is of sufficient processing power.

5.2.3. Network engine

The network engine implements the SAL API over a collection of machines connected by an IP-
based network; typically Ethernet. The cluster can be a dedicated computer cluster, a collection of
user workstations, or a combination. The engine itself provides inter-node routing and management,
leaving the local scheduling decisions within each node up to a local-engine derived manager.
An SAL network stack has two layers (see Figure 6). The lower transport layer contains the

agents themselves (objects that manage all the tasks and administration on a single process) and
their TCP/IP-based links. The agents virtualize and present the messaging layer, where tasks can
send messages to each other using their UUIDs, ignorant of the IP layer or the connection topology
of the agents themselves. For simplicity and efficiency, an SAL network (like PVM) has a master
agent residing on one process. This master agent is responsible for the allocation, tracking, and
migration of all the tasks in the system. It is assumed that within a single site deployment of an
SAL network, at least one stable server (i.e. non-user desktop) machine could be found to assume
this role. A centralized master allows for simpler and faster task administration.
The network engine uses a combination of URL-like direct addressing and UDP/IP broadcast-

based auto-discovery in building the agent network. The simplest and most popular sequence is to

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 655

Network Hardware Layer (Ethernet, etc.) 

TCP/IP

Network Engine 

Agent Infrastructure 

Agent Transport Layer 

UUID Messaging Layer 

Tasks Services

Additional APIs 
(MPI, etc.) 

Figure 6. The SAL network stack.

start an application in auto discovery mode. When a network engine starts, it searches the local
network for any other agent peers and, if found, joins their network. If no peers are found, then it
starts a network consisting of itself as the only member and assumes the master agent role. Users
may also key in the master’s URL directly, connecting them explicitly to a particular network.
In addition to its critical routing functions, the master agent is also responsible for all the task

tracking and management within the network. By centralizing this information, load and resource
allocation decisions can be made instantly and decisively.
For each agent peer, the master tracks its load, routing policy (direct or indirect routing) and

task running policy. Specifically, each agent is able to specify what types of jobs it is willing to
accept: all jobs, no jobs (useful for desktop nodes or front end nodes) and only self-initiated jobs
(for agents that are present only for their own jobs).
All task instantiation requests are handled by the master agent. When a task within an agent

requests the creation of more tasks, the request is routed by the hosting agent to the master agent.
Based on the current loads and hosting policies of the various sub agents, the master relays the
request to the chosen agents. The agents then create the actual tasks report back to the master,
which in turn reports back to the initial agent and task.

5.2.4. Services

Services or service tasks within SAL are tasks that provide well known functions and services
to other tasks. These services are typically persistent (much like a server process in an operating
system) that wait to process requests from client tasks. They may be started at network boot time
or demand-loaded as needed. The tasks themselves receive no special treatment nor use any special
APIs; they are normal tasks within the agent system. Rather, an agent is defined by the services it
provides via a well known and published messaging protocol. Service providers may be application-
specific or general utility function providers. Currently, the service task design pattern may play a
variety of roles.
A monitor service allows tasks to register themselves as monitors of other tasks, either being

notified or perhaps killed when the watched tasks terminates. This service forms the basis for fault
tolerant computing, providing cleanup services for when key tasks within a job abruptly terminate.
An administration service can provide the basic functionality need for general system monitoring

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



656 A. B. DEMKO AND N. J. PIZZI

and administration. Client tasks can either perform automated, routine maintenance as well as
present this information to the user, both graphically and in a report manner. A job manager service
(where ‘job’ refers to a collection of cooperative tasks) is used to track user-visible jobs in the
system. This allows a user to ‘detach’ or disconnect their client application from the agent system
and leave their jobs running unattended. Upon return, the user is presented with a list of jobs (and
their completion states). The user then resumes interacting with a selected job. Specific devices,
instruments, and license-limited software could be accessed through a representative service. This
allows a unique resource to be protected and managed by a sole process, with which all tasks
must submit requests. For specific applications, pseudo-random number generation may also be
centralized. This allows job reproducibility (critical for algorithm testing and development, and
scientific publishing of biomedical research), as a distributed set of tasks must still contact a single,
managing source for their random number sequences. Finally, a file or data set service may provide
centralized access to data files. This may be done for ease of use (consolidation of all the files into
one name space), access control or simply because the files are only available at fixed agents/hosts
(this is particularly useful for cluster configurations without a shared file system). Arbitrary user
authentication and access control may also be implemented to further refine the files available to a
particular task or job set.

6. GRAPHICAL USER INTERFACE LIBRARY

This subsystem provides a basic graphical API wrapped around GTK+ [28] and consists of widget
and window classes that become the foundation for all GUI widgets in Scopira. More specialized and
complex widgets, particularly useful to numerical computing and visualization, are also provided.
This includes widgets useful for the display of matrices, 2D images, bar plots, and line plots.
Developers can use the basic GUI components provided to create more complex viewers for a
particular application domain.

6.1. Specialized interface widgets

The Scopira GUI subsystem provides useful user-interface tools (widgets) for the construction of
graphical, scientific applications, with particular focus on the biomedical research domain. These
widgets complement the generic widgets provided by the GTK+ widget library with additional
widgets for the visualization and inspection of numeric array data.
A matrix/spreadsheet-like widget (see Figure 7) is able to view and edit arrays (often, but not

limited to matrices) of any size. This extensible widget is able to operate on Scopira narrays natively.
The widget supports advances functionality such as bulk editing via an easy to use, stack-based
macro-language. This macro-language supports a variety of operations of setting, copying, and filter
selecting data within the array.
A generic plotting widget (see Figure 1) allows the values of Scopira narrays to be plotted. The

plotter supports a variety of plotting styles and criteria, and the user-interface allows for zooming,
panning and other user customizations of the plot.
An image viewer (see Figure 1) allows fully zooming, panning, and scaling of narrays, useful for

the display of image data. The viewer supports arbitrary color mapping, includes a legend display
and supports a tiled view for displaying a collection of many images simultaneously.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 657

Figure 7. Matrix editor.

Miscellaneous widgets such as a ‘joystick’ control (that permits discrete, cardinal direction
panning), VCR buttons (that present ‘play’, ‘pause’, etc. type buttons) and a random seed editor
are also provided. A simplified drawing canvas interface is included that permits developers to
quickly and easily build their own custom widgets. Finally, Scopira provides a Lab facility to rapidly
prototype and implement algorithms that need casual graphical output. Users code their algorithm
as per usual, and a background thread handles the updating of the graphical subsystem and event
loop.

6.2. Model/view plug-in framework

Scopira provides an architecture for logically separating models (data types) and views (graphical
widgets that present or operate on that data) in the application. This view–model relationship is then
registered at runtime. At runtime, Scopira pairs the compatible models and views for presentation
to the user. A collection of utility classes for the easy registration of typical objects types such
as data models and views are provided. This registration mechanism succeeds regardless of how
the code was loaded; be it as part of the application, as a linked code library, or as an external
plug-in.
Third parties can easily extend a Scopira application that utilizes models and views extensively.

Third-party developers need only register new views on the existing data models in an application,
then load their plug-in alongside the application to immediately add new functionality to the appli-
cation. The open-source C++ image processing and registration library ITK [33,34] have been
successfully integrated into Scopira applications at runtime using the registration subsystem.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



658 A. B. DEMKO AND N. J. PIZZI

Figure 8. An example of Scopira’s 3D visualization facilities.

A model is defined as an object that contains data and is able to be monitored by zero or more
views. A view is an object that is able to bind to and listen to a model. Typically, views are graphical
in nature, but in Scopira non-graphical views are also possible. A project is a specialized model
that may contain a collection of models and organize them in a hierarchical manner. Full graphical
Scopira applications are typically project-oriented, allowing the user to easily work with many
data models in a collective manner. A basic project-based application framework is provided for
developers to quickly build GUI applications using models and views.

6.3. 3D visualization

A complementary subsystem provides the base OpenGL-enabled widget class that utilizes the
GTKGLExt library [35]. The GTKGLExt library enables GTK+-based applications to utilize
OpenGL for 2D and 3D visualization. Scopira developers can use this system to build 3D visual-
ization views and widgets, which allows for greater data exploration and processing (an example
of which is in Figure 8). Integration with more complete visualization packages such as VTK [25]
is also possible.

7. CONCLUSION

Overall, Scopira has successfully achieved its main objectives. Its strength lies in three major areas:
core numerical algorithm development, parallel computing, and graphical application development.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



SCOPIRA: OPEN SOURCE FRAMEWORK FOR BIOMEDICAL DATA ANALYSIS 659

Its numerical array data structures, algorithms, and general tools provide our C++ developers a
high-performance, robust, and common tool kit to use when developing and exchanging algorithm
ideas and implementations. Often we prototyped and experimented with algorithms in slower,
interpreted languages, but then re-implemented the algorithm in C++ and Scopira. This final
version was much faster, used less memory, and was much easier to deploy than the original
interpreted version. Scopira’s existing algorithms and useful runtime error-checking also aided
developers who would have used raw C++ facilities otherwise.
The embeddable Scopira Agents Library (SAL) also permits the rapid parallelization of algo-

rithms that need to scale to more processors. This library is embeddable within Scopira, and unlike
MPI is designed for easy end user deployment. Developer’s efforts into parallelizing their applica-
tions are not only utilized in house during experimentation, but are preserved through to deployment
and usable with even novice users.
Finally, Scopira aids in the development of user deployable applications by providing a complete

multi-platform foundation and collection of visualization widgets for building rich, interactive
applications. By making their numerical programs interactive and easier to use, users are encouraged
to explore and utilize the programs while lowering the barrier of entry for new users.

REFERENCES

1. Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging. Sinauer Associates: Sunderland, 2004.
2. Visual Information Solutions. http://rsinc.com/idl [10 July 2008].
3. Bowman KP. An Introduction to Programming with IDL. Elsevier: Burlington, 2006.
4. The MathWorks. http://www.mathworks.com [10 July 2008].
5. Sigmon K, Davis TA. Matlab Primer. CRC Press: Boca Raton, 2004.
6. Demko AB, Pizzi NJ, Somorjai RL. Scopira—A system for the analysis of biomedical data. Proceedings of the IEEE

Canadian Conference on Electrical and Computer Engineering, Winnipeg, Canada, 12–15 May 2002; 1093–1098.
7. Message Passing Interface Forum. http://www.mpi-forum.org [10 July 2008].
8. Snir M, Gropp W. MPI: The Complete Reference. MIT Press: Cambridge, 1998.
9. PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm [10 July 2008].

10. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderam VS. PVM: Parallel Virtual Machine: A Users’ Guide
and Tutorial for Network Parallel Computing. MIT Press: Cambridge, 1994.

11. OpenGL®: The Industry’s Foundation for High Performance Graphics. http://www.opengl.org [10 July 2008].
12. Hill FS, Kelley SM. Computer Graphics Using OpenGL. Prentice-Hall: Upper Saddle River, 2006.
13. Pizzi N, Vivanco R, Somorjai RL. EvIdent: A functional magnetic resonance image analysis system. Artificial Intelligence

in Medicine 2001; 21:263–269.
14. Bezdek J, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computational Geosciences 1984; 10:

191–203.
15. Pizzi NJ. Classification of biomedical spectra using stochastic feature selection. Neural Network World 2005; 15(3):

257–268.
16. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA,

Fujimoto JG. Optical coherence tomography. Science 1991; 254:1178–1181.
17. Brezinski ME, Tearney GJ, Boppart SA, Swanson EA, Southern JF, Fujimoto JG. Optical biopsy with optical coherence

tomography: Feasibility for surgical diagnostics. Journal of Surgical Research 1997; 71:32–40.
18. MFC Feature Pack for Visual C++ 2008. http://msdn.microsoft.com/en-us/library/bb982354.aspx [10 November 2008].
19. Jones R. Introduction to MFC Programming with Visual C++. Prentice-Hall: Upper Saddle River, 2000.
20. Qt Cross-Platform Application Framework. http://trolltech.com/products [10 November 2008].
21. Dalheimer MK. Programming with Qt. O’Reilly Media: Cambridge, 2002.
22. WxWidgets: Cross-Platform GUI Library. http://www.wxwidgets.org/ [10 November 2008].
23. Smart J, Hock K, Csomor S. Cross-platform GUI Programming with wxWidgets. Prentice-Hall: Upper Saddle River,

2005.
24. VTK: The Visualization Toolkit. http://www.vtk.org [10 July 2008].
25. Schroeder W, Martin K, Lorensen B. Visualization Toolkit: An Object-oriented Approach to 3D Graphics. Kitware:

Clifton Park, 2006.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe



660 A. B. DEMKO AND N. J. PIZZI

26. Boost C++ Libraries. http://www.boost.org [10 July 2008].
27. Karlsson B. Beyond the C++ Standard Library: An Introduction to Boost. Addison-Wesley Professional: Reading, 2005.
28. The GTK+ Project. http://www.gtk.org [10 July 2008].
29. Krause A. Foundations of GT K+ Development. Springer: New York, 2007.
30. Blitz++: Object-oriented Scientific Computing. http://www.oonumerics.org/blitz [10 July 2008].
31. Shan H, Singh JP, Oliker L, Biswas R. Message passing and shared address space parallelism on an SMP cluster. Parallel

Computing 2003; 29:167–186.
32. Caglar SG, Benson GD, Huang Q, Chu C-W. USFMPI: A multi-threaded implementation of MPI for Linux clusters.

Proceedings of the International Conference on Parallel and Distributed Computing and Systems, Marina del Rey,
U.S.A., 3–5 November 2003; 104–109.

33. ITK: NLM Insight, Segmentation & Registration Toolkit. http://www.itk.org [10 July 2008].
34. Ibanez L, Schroeder W. The ITK Software Guide 2.4. Kitware: Clifton Park, 2005.
35. GTKGLExt: Main Page. http://www.k-3d.org/gtkglext/ [10 July 2008].

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:641–660
DOI: 10.1002/spe


